Смекни!
smekni.com

Теоретичні основи теплотехніки (стр. 27 из 35)

Схеми руху теплоносіїв показані на рис. 1.

Прямоточна.

Протитечійна.

Перехресна.

Комбінована.

В усіх теплообмінниках температура більш нагрітого теплоносія, що вілдас тепло зменшується від t’1 до t’’1 ( а температура менш нагрітого збільшується віл t’2 до t’’2; . Одночасно різниця температур (температурний напір) між теплоносіями вздовж поверхні нагрівання також буде змінюватись від ∆tmax до ∆tmin

Характер зміни температур для прямоточної і протитечійної схем руху теплоносіїв показано на рис, 2.

В розглянутих схемах руху теплоносіїв також будуть мати місце рівні термічні опори тепловіддачі для кожного теплоносія і термічні опори тепловіддачі взагалі.

Звідси видно, шо буде різна і інтенсивність теплопередачі в теплообмінниках.

Інтенсивність передачі тепла від одного до другого характеризується коефіцієнтом теплопередачі К. Розглянемо схему передачі тепла через елемент стінки (рис.3).

Кількість переданого тепла (потужність теплового потоку) визначається формулою теплопередачі:

Q=kF∆tсер (1)

Де Q - потужність потоку тепла, Вт;

Р - поверхня теплообміну, м2;

k - коефіцієнт теплопередачі, Вт/м2К

tсер - середній температурний напір - середиьологарифмічна різниця між температурами теплоносіїв, град, С.

Коефіцієнт теплопередачі визначається формулою:

(2)

для циліндричних сттнок.

(3)

для плоских та тонких циліндричних стінок.

де α1- коефіцієнт віддачі тепла від гарячого середовища до стінки. Вт/м" К;

δ- товщина стінки, м;

λ. - коефіцієнт теплопровідності стінки,:

а2- коефіцієнт віддачі тепла від стінки до холодного серелонища, Вт/м2 К;

dсер - середній діаметр, м.

Середній температурний напір залежить від схеми руху теплоносіїв в теплообміннику і їх фізичних властивостей (рис, 1 та рис. 2):

(3)

Де ∆tmax-максимальна різниця між температурами теплоносіїв в °С;

∆tmin- мінімальна різниця між температурами теплоносіїв в °С;

∆tmax=t’1- t’2

для прямотоку

∆tmax=t’’1- t’’2

Якщо зміна температур теплоносіїв невелика, то можна використати середньоарифметичний напір, тобто при

(3a)

Потужність теплового потоку Q, відданого гарячим і одержаного холодним носісм (нехтуючи втратами б навколишнє середовище), визначаємо з рівняння теплового балансу

Q=G1cp1(t’1- t’2)= G2cp2(t’’1- t’’2) (4)

де G1і G2 - масові витрати гарячого і холодного теплоносія, кг/сек;

cp1 і cp2- ізобарна теплоємність гарячого і холодного теплоносія, Дж/кг град.

Добуток

і називається умовним еквівалентом. Тоді рівняння (4) прийме вигляд:

(4а)

Якщо позначити зміну температури через δt, то одержимо

(4б)

Отже, чим більший еквівалент, тим менше змінюється температура даного теплоносія (мал, 2).

Якщо в теплообміннику тепло передається віл пари, що конденсується, то рівняння теплового балансу прийме вигляд:

Q=G2cp2(t’’2- t’2)=Gn(in-in) (Вт) (5)

де: in - ентальпія пари при вході в теплообмінник, Дж/кг;

ik - ентальпія конденсату, Дж/кг.

В. Випробовування теплообмінного апарату

Хід роботи

До проведення досліду необхідно вивчити схему установки.

По трубі 1 (рис. 4) з центральної системи подається гаряча вода. Кількість її протікання регулюється вентилем 8. Витрата гарячої води визначається мірною посудиною 9. Трубу 1 помішено в трубу 2 більшого діаметра, а в кільцевий простір між ними подається холодна вода з системи водопроводу. При передачі тепла температура одного теплоносія зменшується від t’1до t’’1, а другого підвищується від t’2 до t’’2

Розхід холодної води визначаємо мірною посудиною 10. Регулювання проводиться вентилем 7.

Теплообмінник зовні покритий тепловою ізоляцією. Температуру гарячої і холодної воли вимірюємо скляними спиртовими термометрами.

Під час проведення лабораторної роботи спочатку частково відкриваємо вентиль 7, потім вентиль 8 і встановлюємо стабільний тепловий режим, після того робимо вимірювання і записуємо в журнал випробування. Далі змінюємо кількість протікання холодної води, коли режим знову встановлюється повторюємо вимірювання. Вимірюваний проводимо 3-4 рази і визначаємо для кожного режиму середнє значення.

На основі даних досліду визначаємо за формулою (2) коефіцієнт теплопередачі і будуємо графік залежності k=f(v).

ПРОТОКОЛ ВИМІРЮВАННЯ

Показ барометра Во=мм.рт,ст

Температура оточуючого повітря = ос

№ досліду № заміру Вода гаряча (гріюче середовище) Вода холодна (середовище, що нагрівається)
Температури на вході, t,0С Температура на виході t,0С К-сть води, води, см2 Трив, заміру, сек Тем-ра при вході t,0С Тем-ра на виході t,0С К-сгь зібр. води, см2 Трив, виміру сек
1 2 3 4 5 6 7 8 9 10
І 1 2 3
Середнє значення
ІІ 1 2 3
Середнє значення
Ш 1 2 3
Середнє значення
Найменування Позначення Розмірність Спосіб одержання величини Числові значення
1 2 3
1 2 3 4 5 6 7
Внутрішній діаметр трубопровода d1 м
Зовнішній діаметр трубопровода d2 м
Робоча довжина трубопровода L м
Робоча поверхня теплообмінника F м2 ΠdсерL
Середня температура холодної води при вході t’2 3 показу термометра
Середня температура холодної води на виході t’2з °С 3 повазу термометра
Середня температура холодної води t2сер °С
Теплоємність холодної води Ср2
3 таблиць
Густина колодної води ρ кг/м -
Кількість зібраної холодної води G2 кг/сек
Середня тем пература гарячої води при вході t’2 °С 3 показу термометра
Середня температура гарячої води на виході t’’2 °С 3 показу термометра
Середня температура гарячої води t1сер °С
Теплоємність гарячої води Ср1
Густина гарячої води ρ кг/м
Кількість зібраної гарячої води G1 кг/сек
Швидкість протікання гарячої води V м/с
Кількість тепла, відданого гарячою водою Q Дж/сєк За формулою (4)
Максимальний температурний напір між гарячою і холодною водою ∆tmax °С ∆tmax=t’1- t’2
Мінімальний температурний напір між гарячою і холодною волою ∆tmin °С ∆tmax=t’’1- t’’2
Середиьолога- рифмічний температурний напір між гарячої і холодною водою ∆tсер °С
Коефіцієнт теплопередачі k


Використана література

1. М.Михеев, И.Михеева. Краткий курс теплопередач и, 1961.

2. А. Баскаров й др. Общая теплотехника, 1963.

3. Н.Кираковский, М.Недужий. Лабораторний практикум по курсу общей теплотехники, 1966.

4. Є.Міговк та В.Єресько, Лабораторні роботи з загальної теплотехніки, 1960.


Міністерство освіти України

Тернопільський державний технічний університет імені Івана Пулюя

Кафедра обладнання харчових технологій

Методичні вказівки

до лабораторної роботи № З

«Тепловіддача горизонтальної труби при вільному русі повітря».

Тернопіль 2003


У даних методичних вказівках подані теоретичні основи, опис експернментальної установки і практичні рекомендації лля проведення лабораторної роботи і обробки дослідних даних

Мета роботи - засвоїти знання з теорії" конвсктивнот теплообміну при вільному русі цілини (вільній конвекції), ознайомитись з метопи кою експериментального дослідження середньої характери стики процесу: іасвоіти поняття: чільна конвекція, тепловнР потік, густина теплового потоку, коефіцієнт тепловіддачі, температурний палір, теплофізичні властивості рідин.