Смекни!
smekni.com

Способы производства пищевых красителей (стр. 10 из 14)

где Гi, Гj – геометрические размеры опоры, м;

К – коэффициент, характеризующий отношение вылета опоры к ее ширине.

Г1 = 0,72 . 65 = 46,8 мм = 0,0468 м;

Г2 = 0,72 . 90 = 64,8 = 0,0648 м.

Вылет опоры составит величину, определяемую по формуле:

А = а + 20 (4.50)

А = 46,8 + 20 = 66,8 » 70 мм = 0,07 м.

Используя графическую зависимость [15], находим коэффициент k, зависящий от гибкости ребра опоры, равный 0,3. Тогда толщина ребра определится по формуле:

(4.51)

м

По конструктивным соображениям принимаем толщину ребра d = 6 мм.

Проверяем фланговые швы на срез по следующей формуле:

, (4.52)

где h – размер катета сварного шва, м;

L – общая длина сварных швов, м;

[sш] - допускаемое напряжение материала швов, МПа.

0,189 . 106 Па < 80 . 106 Па

Условие выполняется.


3.7 Определение толщины слоя осадка при микрофильтрации [11]

Сопротивление микрофильтрации состоит из сопротивления осадка и фильтрующей перегородки.

Сопротивление фильтрующей перегородки определяется по формуле:

, (4.53)

где R0 – коэффициент сопротивления перегородки, 1/м.

Rn =16 . 1010. 0,35 . 10-3 = 5,6 . 107 н . с/м3.

Скорость микрофильтрации определяется как объем фильтрата, получаемый в единицу времени с единицы площади микрофильтрации. Если скорость микрофильтрации изменяется, то:

, (4.54)

где D Р – разность давлений до и после фильтрующей перегородки, Н/м2;

R – сопротивление микрофильтрации, Н. с/м3.

Из формулы (4.54) определим давление микрофильтрации:

DR1= С .Rn = 5,6 . 107. 0,00012 = 6720 н/м2.

По [11] выбираем модуль сжатия осадка G = 5,8 . 105 н/м2.

Определим время накопления слоя осадка:

c.

Толщина осадка определится по формуле:


, (4.55)

где e - объем осадка, приходящийся на единицу объема фильтрата, м33;

s0 – структурное сопротивление нормального осадка, 1/м2.

м.

3.8 Расчет болтового соединения

Расчет болтового соединения с зазором с использованием системы АПМ WinJoint. Система АПМ WinJoint предназначена для расчета соединений деталей машин. Название «WinJoint» происходит от слов «Windows» (так как система работает в среде MicrosoftWindows) и «Joint» (соединение). Программа позволяет рассчитывать практически все виды соединений, встречающихся в современном машиностроении.

Расчет приведен в Приложении.


4. Выбор параметров контроля и управления процессом

Таблица. 4.1 Контролируемые и регулируемые параметры

Параметры технологического процесса Пределы отклонений параметра Оптимальное значение параметра Допустимая погрешность контроля Количество одноименных точек Примечание
с учетом возможных аварийных ситуаций допустимых по технологии Абсолютная Относительная
1 2 3 4 5 6 7
1.Температура в реакторе при экстакции, ºС 0…150 47,5…52,5 50 0,83 1,66 1 КР
2. Температура пара в рубашке реактора, ºС 0…200 116,5…123,5 120 1,8 1,50 1 К
3. Температура экстракта после теплообменника, ºС 0…100 23,75…26,25 25 0,41 1,66 1 КР
4. Температура охлажденной воды подаваемой в теплообменик, ºС 0…100 14,5…15,5 15 0,25 1,66 2 К
5. Температура выпариваемого экстракта, ºС 0…200 47,5…52,5 50 0,83 1,66 1 КР
6. Температура конденсировавшегося спирта, ºС 0…100 23,75…26,25 25 0,41 1,66 1 К
7. Давление в реакторе при экстракции, МПа 0,05…0,15 0,0723…0,0677 0,07 1,15×10-3 1,66 1 К
8. Давление пара в рубашке реактора, МПа 0,10…0,35 0,24…0,26 0,25 4,15×10-3 1,66 2 К
9. Давление в реакторе при выпаривании, МПа 0,05…0,15 0,0723…0,0677 0,07 1,15×10-3 1,66 1 К
10. Расход нового спирта, м3 0…5 2,5…2,7 2,6 0,043 1,66 1 К
11. Расход спирта поступающего в реактор, м3 0…5 2,5…2,7 2,6 0,043 1,66 1 К
12. Уровеньверхний экстракта в реакторе при экстракции, м 0…1,2 0,98…1,017 1 1,66 1 КР
13. Уровень экстракта в Е1, м 0…2,2 1,9…2,1 2 1,66 1 КР
14. Уровень верхний экстракта в реакторе при выпаривании, м 0…1,2 0,98…1,017 1 0,0175 1,75 1 КР
15. Уровень спирта в Е2, м 0…2,2 1,9…2,1 2 0,033 1,66 1 КР

4.1. Выбор приборов контроля, регуляторов и средств автоматизации

Таблица 4.2 Спецификация приборов и средств автоматизации

Позиционный номер Измеря-емый параметр Место установки Наименование и характеристика прибора Тип прибора Количество Завод изготовитель
1 2 3 4 5 6 7
1а, 2а, 3а, 4а, 5а, 6а, 7а, 8а Темпе-ратура На аппарате Термометр сопротивления медный. Градуировка 23. Предел измерений -50 - +250°С. Класс точности прибора 0.1 ТСМ–6097 (град. 23). 8 Приборо-строите-льный завод, Луцк.
1б, 2б, 3б, 4б, 5б, 6б, 7б, 8б -//- На щите Одноточечный показывающий и регистрирующийприбор. Основная погрешность ±1.5 ДИСК-250и-2431 8 «Тепло-прибор»,Челябинск.
1в, 3в, 5в, 7в -//- Электро-пневматическийпреобразователь ЭПП-63 4 «Энерго-прибор», Москва
1г, 3г, 5г, 7г -//- Переключатель ПП-7 4 «Газприбор-автоматика», Калининград
1д, 3д, 5д, 7д Трубоп-ровод Регулирующий клапан 25ч30нж 4 «Красный профинтерн», Гусь – Хрустальный
9а-12а Давле - ние Трубоп-ровод Пневмосиловой - датчик МП–П2 3 «Манометр», Москва
10б, 12б -//- Нащите Вторичный показывающий и регистрирующий прибор ПВ4.2П 2 «Тизприбор, Москва
10в, 12в -//- Пневмо-электрический преобразователь ПЭ–55М 2 Чебоксарский завод электри-ческих исполни-тельных механизмов
9б, 11б -//- Вторичный показывающий и регистрирующий прибор ПВ10.1П 2 «Тизприбор», Москва
9в, 11в -//- Пропорционально-интегральный регулятор ПР3.31 2 «Тизприбор», Москва
9г, 11г -//- Пневмоэлектрический преобразователь ПЭ-55М 2 Чебоксарский завод электри-ческих исполни-тельных механизмов
9д, 12д -//- Электро-пневматическийпреобразователь ЭПП-63 2 «Энерго-прибор», Москва
9е, 11е -//- Переключатель ПП-7 2 «Газприбор-автоматика», Калининград
13, 14 Расход Трубопровод Счётчик. Основная погрешность ±2. Максимальная температура воды 90 °С. ВВГ-50 2

«Теплоприбор»,

Рязань

15а…18а, 16б, 18б Уровень Трубоп-ровод Датчик емкостной. Основная погрешность ±2. ДЕ–4А 6

«Теплоприбор»,Рязань

15б, 16в, 17б, 18в -//- Нащите Регулятор – сигнализатор уровня ЭСУ–1М 4

«Теплоприбор»,Рязань

15в, 16г, 17в, 18г -//- Переключатель ПП-7 4 «Газприбор-автоматика», Калининград
17а – 19а -//- Усилитель Sitran 2 «Юнион Компании», США
КМ1…КМ5 По месту Магнитный пускатель ПМЕ–123.1 5 Саранский приборо-строительный завод
SB1… SB3 На щите Кнопка КУ–123–12–У2 3 -//-
SA1 На щите Универсальный переключатель УП-5300 1 -//-
HL1 – HL11 На щите Сигнальная лампа СЛ-220 11 -//-

4.2 Описание схем контроля, регулирования и сигнализации

Одним из важнейших направлений научно-технического прогресса является автоматизация и механизация производства. Они призваны, коренным образом преобразовать рабочие места, сделать труд рабочих, интеллигенции более производительным, творческим, привлекательным. Это одно из важнейших социальных задач в настоящее время. Уровень автоматизации в среднем по стране и в народном хозяйстве постоянно возрастает.

Современный этап автоматизации опирается на революцию в электровычислительной технике.

Измерение и регулирование температуры в реакторе во время экстракции осуществляется контуром 1. Сигнал с термометра сопротивления ТСМ-6097 (1а) поступает на вторичный прибор - автоматический уравновешенный мост ДИСК–250И-2431 (1б) со встроенным пневматическим регулятором. В результате сравнения вырабатывается управляющие воздействие, которое через переключатель кнопочный ПП-7 (1г, 3г) поступает на регулирующий клапан с пневмоприводом 25ч30нж (1д).