Смекни!
smekni.com

Сучасні нанотехнології (стр. 2 из 5)

Експерти з Каліфорнійського Університету (University of California) в Санта Барбара, незважаючи на те, що вважають викладений метод простим і дешевим, обрали дещо інший шлях. Вони використовують методи традиційної літографії для формування на підкладці структур шириною порядку одиниць мікрометрів, уздовж яких і вирівнюється блочний сополімер, використовуючи краї цих структур в якості направляючих.

Вчені MIT (Massachusetts Institute of Technology), що працюють у цій області досить давно (див., наприклад, http://web.mit.edu/… ly-0814.html), попереджають, що організація кополімерів в структури певної форми, це тільки перший крок у напрямку створення терабітних запам'ятовуючих пристроїв. Далі постають складні завдання виготовлення пристроїв нанорівні, зчитування і запису інформації на магнітних ділянках настільки малих розмірів. Після самосборки полімеру, яке мається на увазі виготовлення шаблону, цю структуру треба навчитися переносити на магнітний матеріал. Завдання ж практичної запису (і зчитування) інформації такої щільності дуже далекі від тривіальних.

2. Використання та застосування

2.1 Терабітна мережа

Компанія Magyar Telekom модернізувала свою IP-магістраль в рамках стратегії, спрямованої на поширення IP-послуг та широкосмугових технологій на території Угорщини. Установка маршрутизаторів Cisco CRS-1 дозволила різко збільшити ємність і надійність мережі Magyar Telekom. Цей проект став важливою віхою на шляху технологічного оновлення компанії Magyar Telekom – першого угорського оператора зв'язку, що впровадила маршрутизатори з терабітной ємністю.

«Повсюдне поширення широкосмугових інтернет-послуг – одна з головних стратегічних цілей Magyar Telekom. Ця мета повністю співпадає з національними інтересами. Ми будуємо інформаційне суспільство майбутнього, – заявив головний виконавчий директор Magyar Telekom Крістофер Маттхайзен. – Magyar Telekom виходить за рамки чисто інфокомунікаційних послуг і зміцнює свої позиції на аудіовізуальному ринку. Ми першими впровадили цілу низку новаторських послуг в галузі фіксованого та мобільного зв'язку, а також в області доставки контенту. Серед них сучасна соціальна мережа iWiW, IP-телебачення (T-Home TV), мобільна телефонія третього покоління з підтримкою відео та телевізійного мовлення, а також мобільний доступ в інтернет (web 'n' talk)».

Будівництво мережевої архітектури Cisco IP NGN створює нові можливості для модернізації телекомунікаційної інфраструктури. Ця архітектура закладає фундамент для впровадження новаторських IP-послуг, налаштованих на вимоги індивідуальних абонентів (інтегровані медіапослуг, відео та IPTV, голос поверх IP, інтерактивні ігри та доступ до цифрового контенту, у тому числі до фотобібліотекам та кінофільмів на вимогу).

2.2 «Традиційна» і «нова» наноелектроніка

Звернімося до історії. Напівпровідникова електроніка спочатку мала справу з нанорозміри, так ширина області об'ємного заряду р-n-переходу стабілітрон складає десятки нанометрів, а тунельного діода – одиниці.

У 1970–1980-ті роки в напівпровідникову техніку увійшли такі нанорозмірні структури, як гетеропереходи, сверхрешеткі, квантові ями, квантові дроту і крапки. Для їх створення були розроблені технологічні процеси, які народилися як логічний розвиток і вдосконалення напівпровідникової класики: епітаксії, дифузії, імплантації, напилювання, окислення і літографії. Набула поширення молекулярно-променевої епітаксії, іонно-плазмова обробка, іонно-променеве напилення, фотонний відпал та ін Зрозуміло, перехід до маніпулювання потоками вільних атомів, молекул, іонів привів до значних змін у класичних технологічних схемах. Зокрема, істотним стало явище самоорганізації – мимовільне освіта тих чи інших просторових структур на поверхні підкладки (зрозуміло, ця мимовільно ініціюється ззовні). Сверхпрецізіонность перерахованих технологій дозволяє відтворено отримувати ізольовані кластери, що містять сотні атомів; однорідні оптичні плівки з «шорсткістю» менше 0,2 нм; гетероструктури, що складаються з різнорідних наношарів заданого складу і т. п. Фактично ці технології – перший крок на шляху «атомного конструювання». Приладове підтвердження життєздатності перерахованого – в широко відомих досягнення новітніх мікросхем, лазерів, світлодіодів, Фотоприлад (докладніше див [7–9]). Таким чином, розвиток мікроелектроніки природно і логічно привело її до наноелектроніці, яку ми умовно назвемо традиційної наноелектроніки.

Але в 1980–1990-ті роки відбулися події і принципово іншого роду. Цей винахід скануючого тунельного мікроскопа (СТМ, 1981 р.) та атомно-силового мікроскопа (АСМ, 1986 р.), що дозволили маніпулювати нанометровим кластерами, аж до окремих атомів і молекул. У 1985 році відкриті фулерени – нова структурна форма існування вуглецю. У 1991 році на їх основі створені нанотрубки – вуглецеві пористі структури циліндричної форми, що володіють цілим рядом унікальних властивостей, аж до надпровідності. Нарешті, в 1998 році на базі нанотрубок отриманий транзисторний ефект [10]. Ці відкриття дали старт наноелектронних досліджень, що спирається на схему «знизу вгору», з її ідеологією конструювання пристроїв буквально з одиничних атомів. Зародився те, що ми умовно назвемо нової наноелектроніки. Підкреслимо її дослідний, невиробничий характер – адже техніку ВТМ і АСМ навіть з натяжкою не можна віднести до технології в загальноприйнятому розумінні (в цьому твердженні ми розходимося з авторами робіт [8, 7]). Строго кажучи, це не що інше, як техніка фізичного експерименту.

За авторитетним думку [11], модернізована напівпровідникова класика – як в технології, так і в теорії транзисторів – працюватиме принаймні до 10 нм. Правда, при цьому «потрібно рішення ряду принципових проблем», але ми вважаємо, що всі вони – з розряду технічних. Дійсна ж зміна парадигми нанопріборов – перехід до функціонування за квантовим законам – відбудеться лише з появою промислових технологій атомного масштабу (0,5–0,1 нм), орієнтовно до 2030 року.

Отже, якщо брати до уваги не очікування, а реальний приладовий вихід, то можна говорити лише про традиційну наноелектроніці. Більше того, ситуація навряд чи зміниться в найближчі роки – це знову ж таки підказують нам історичні зіставлення. Якщо відлік історії нової наноелектроніки почати з нанотрубок і транзистора на їх основі, віднісши все інше до передісторії, то й тоді вийде 10–15 років, термін чималий. За такий же початковий період (після винаходу транзистора в 1948 році) були створені практично всі різновиди транзисторів, діодів, тиристорів; ці прилади пройшли апаратурну обкатку в Корейській війні (1950–1953 роки); почалося їх виробництво на десятках підприємств багатомільйонними тиражами. Напівпровідникові прилади увійшли до багатьох військові системи; була підготовлена технологічна база – планарна технологія – для майбутньої мікроелектроніки. Вагомо, чи не так? Із ще більшим прискоренням і за аналогічним сценарієм розвивалися мікросхеми, що стартували в 1958–1959 роки. Зазначимо лише, що вже в 1971 році з'явилися мікропроцесори, що кардинально змінили ідеологію електронного апаратобудування. А що в тих же критеріях оцінки – типи, штуки, заводи, військові застосування – за такий же термін дала нова наноелектроніка? Якщо коротко – нічого.

Історичний досвід вчить, що якщо новий науково-технічний напрям не проявляє себе за час природного втілення, то це означає одне з двох: або його принципову нездійсненною, або передчасність. Перше означає, що новий напрямок онтологічно ущербно (фізично, технологічно і т. п.) і не реалізується в принципі, як комп'ютер на тунельних діодах. Передчасність на увазі, що ще немає об'єктивних умов для технічної реалізації, як у випадку з розробкою протівосамолетного «променевого зброї» в ленінградському НДІ-9 в 1930-і роки. Час природного втілення нового ефекту в практику розрахувати неможливо – дуже багато невизначеностей. Але історія, наш експерт, пропонує деякі орієнтири. Так, у другій половині 20 століття ні один з найбільших проектів не тривав більше 10 років: американський і наш атомні проекти – 6–7 років, висадка людини на Місяць – 7–8 років. Це не випадковість, а історична обумовленість – будь-які закладені у «витоків» ідеї, технічні рішення, матеріали за 10 років не просто застарівають, а стають архаїкою. І якщо проект не був втілений у «метал», то його і продовжувати не варто, дешевше почати заново. Такий нинішній динамізм – або робити швидко і виставляти «на продаж», або – не братися. Зрозуміло, мова йде про створення виробів, вирішенні інших конкретно-відчутних завдань. До нанонаук це не відноситься – дослідження фундаментальних проблем можуть тривати необмежено довго (хоча і тут тривала відсутність результату «стомлює» суспільство і самих вчених, приклад – піввіковий пошук дешевої термоядерної енергії помітно вщух).

Порівняльно-історичний аналіз дозволяє сформулювати ряд важливих тез про умови успіху нового напряму не у наближенні-умовному форматі, як це було вище, а цілком визначено, доказово й безальтернативно.

Теза перша – успіх мікроелектронного проекту був би неможливий, якби «під нього» не знайшовся адекватний напівпровідниковий матеріал – кремній, універсальний в частині одночасного досягнення функціональних, експлуатаційно-надійностних, технологічних, вартісних характеристик мікросхем. По окремих позиціях можуть виявитися кращим арсенід галію, германій, екзотичні тонкі плівки і т. п. Але вони – не універсальні, і в підсумку приречені лише на зокрема. Навпаки, ті нові напрямки, які орієнтовані на кремній – «кремній на діелектрику», мікромеханіки – мають безумовну перспективу, труднощі і проблеми обов'язково вирішаться за рахунок всієї потужності технологічного потенціалу мікроелектроніки.