Смекни!
smekni.com

Технологические методы лезвийной обработки резанием (стр. 2 из 5)

Рис. 1.4. Схемы определения максимальной скорости режущей кромки инструмента υе, формы поверхности резания R и глубины резания h при обработке: а – точением; б – сверлением; в – фрезерованием; г – строганием; д– протягиванием; е – хонингованием; ж – суперфинишированием.

Тогда полная скорость перемещения (ve)произвольной точки Мрежу­щей кромки складывается из скорости главного движения (v) и скорости подачи (vs):

ve = v + vs (1)

Поверхность резания Rпредставляет собой поверхность, которую описывает режущая кромка или зерно при осуществлении суммарного движения, включающего главное движение и движение подачи. При точении, сверлении, фрезеровании, шлифовании поверхности резания — пространственные линейчатые, при строгании и протягивании — пло­ские, совпадающие с поверхностями главного движения; при хонинговании и суперфинишировании они совпадают с поверхностями глав­ного движения.

Поверхности Roи Roп называются, соответственно, обрабатывае­мой поверхностью заготовки и обработанной поверхностью детали (см. рис. 1.2).

В процессах точения, сверления, фрезерования и шлифования глав­ное движение и движение подачи выполняются одновременно, а в про­цессах строгания, хонингования движение подачи выполняется после главного движения.


1.2. Параметры технологического процесса резания

К основным параметрам режима резания относятся скорость главного движения резания, скорость подачи и глубина резания[4].

Скорость главного движения резания (или скорость ре­зания) определяется максимальной линейной скоростью главного движения режущей кромки инструмента. Эта скорость выражается в м/с.

Если главное движение резания вращательное, как при точении, сверлении, фрезеровании и шлифовании, то скорость резания будет определяться линейной скоростью главного движения наиболее удаленной от оси вращения точки режу­щей кромки — максимальной линейной скоростью главного движения (см. рис. 1.4):

v = ωD/2 (2)

где D - максимальный диаметр обрабатываемой поверхности заготовки, определяющий положение наиболее удаленной от оси вращения точки режущей кромки, м; ω - угловая скорость, рад/с.

Выразив угловую скорость ω через частоту вращения шпинделя станка, получим:

v = πnD(3)

При строгании и протягивании скорость резания vопределяется скоро­стью перемещения строгального резца и протяжки в процессе резания отно­сительно заготовки.

При хонинговании и суперфинишировании скорость резания определя­ется с учетом осевого перемещения (см. рис. 1.4, е, ж)инструмента.

Скорость резания оказывает наибольшее влияние на производительность процесса, стойкость инструмента и качество обработанной поверхности.

Подача инструмента определяется ее скоростью vs. В технологических расчетах параметров режима при точении, сверлении, фрезеровании и шлифовании используется понятие подачи на один оборот заготовки Soи выражается в мм/об. Подача на оборот численно соответству­ет перемещению инструмента за время одного оборота:

So= vs/ n(4)

При строгании подача определяется на ход резца. При шлифовании по­дача может указываться на ход или двойной ход инструмента. Подача на зуб при фрезеровании определяется числом зубьев Z инструмента и подачей на оборот:

Sz = So/ Z(5)

Глубина резания А определяется расстоянием по нормали от обработан­ной поверхности заготовки до обрабатываемой, мм. Глубину резания задают на каждый рабочий ход инструмента. При точении цилиндрической поверх­ности глубину резания определяют как полуразность диаметров до г: после обработки:

h = (Dur - d) / 2 (6)

где d - диаметр обработанной поверхности заготовки, мм. Величина подачи и глубина резания определяют производительность про­цесса и оказывают большое влияние на качество обрабатываемой поверхности.

К технологическим параметрам процесса относятся геометрия режущего ин­струмента, силы резания, производительность обработки и стойкость инструмента.

Геометрические параметры режущего инструмента определяются углами, образуемыми пересечением поверхностей лезвия, а также положением поверхностей режущих лезвий относительно обрабаты­ваемой поверхности и направлением главного движения. Указанные пара­метры идентичны для различных видов инструмента, что позволяет рассмот­реть их на примере резца, используемого при точении.

Углы резца по передним и задним поверхностям измеряют в определен­ных координатных плоскостях. На рис. 1.5 а изображены координатные плоскости при точении, а на рис. 1.5, б углы резца в статике.

Главный передний угол γ— угол между передней поверхностью лезвия и плоскостью, перпендикулярной к плоскости резания; главный задний угол α – угол между задней поверхностью лезвия и плоскостью резания; угол заострения β – угол между передней и задней поверхностями. Из принципа построения углов следует, что

α + β + γ = π/2.

Угол наклона режущей кромки X— угол в плоскости резания между режущей кромкой и основной плоскостью.

Углы в плане: главный угол в плане φ – угол в основной плоскости ме­жду следом плоскости резания и направлением продольной подачи; вспомогательный угол в плане φ' – угол в основной плоскости между вспомога­тельной режущей кромкой и обработанной поверхностью.

Рис. 1.5. Геометрические параметры токарного резца:

а – координатные плоскости; б – углы резца в статике; 1 – плоскость резания Рп; 2 – рабочая плоскость Рs; 3 – главная несущая плоскость Рt; 4 – основная плоскость Pv

Геометрические параметры режущего инструмента оказывают сущест­венное влияние на усилие резания, качество поверхности и износ инструмен­та. Так, с увеличением угла у инструмент легче врезается в материал, сни­жаются силы резания, улучшается качество поверхности, но повышается износ инструмента. Наличие угла а снижает трение инструмента о поверх­ность резания, уменьшая его износ, но чрезмерное его увеличение ослабляет режущую кромку, способствуя ее разрушению при ударных нагрузках.

Силы резания Р представляют собой силы, действующие на ре­жущий инструмент в процессе упругопластической деформации и разруше­ния срезаемой стружки.

Силы резания приводят к вершине лезвия или к точке режущей кромки и раскладывают по координатным осям прямоугольной системы координат xyz(рис. 1.6.). В этой системе координат ось zнаправлена по скорости глав­ного движения и ее положительное направление соответствует направлению действия обрабатываемого материала на инструмент. Ось у направлена по радиусу окружности главного движения вершины. Ее положительное на­правление также соответствует направлению действия металла на инстру­мент. Направление оси х выбирается из условия образования правой системы координат. Значение усилия резания определяется несколькими факторами. Оно растет с увеличением глубины hрезания и скорости подачи s(сечения срезаемой стружки), скорости резания ν, снижением переднего угла γ режу­щего инструмента. Поэтому расчет усилия резания производится по эмпири­ческим формулам, установленным для каждого способа обработки (см. спра­вочники по обработке резанием). Например, для строгания эта формула имеет вид Р = СphXpsYpXnгде коэффициенты Ср, Хр, Yp, nхарактеризуют материал заготовки, резца и вид обработки.

Мощность процесса резания определяется скалярным про­изведением:

N = Pve (7)

Выразив это произведение через проекции по коорди­натным осям, получим:

N= Pzvz + Pyvy+ Pxvx (8)

где vx, vy, vz— проекции на оси координат скорости движения точки приложения равнодействующей сил резания. В практических расчетах используется приближенная зависимость N = Pzv. Это упрощение обусловлено тем, что составляющие Руи Рхполной силы резания малы по сравнению с Р2, а скорость подачи относительно ско­рости резания составляет всего 1 - 0,1%.

Рис. 1.6. Схема действия сил резания на режущую кромку инструмента в точке, имеющую максимальную скорость перемещения νе, при обработке: а – точением; б – сверлением; в – фрезерованием; г – строганием; д– протягиванием; е – хонингованием; ж – суперфинишированием.

Производительность обработки при резании определяется числом деталей, изготовляемых в единицу времени: Q= \/Тт . Время изготовления одной детали равно Тт= Тд + Тт + Ткп, где То— машинное время обработки, затрачиваемое на процесс резания, определяется для каждого технологического способа; Тт— время подвода и отвода инструмента при обработке одной детали; Гвсп — вспомогательное время установки и на­стройки инструмента.

Таким образом, производительность обработки резанием в первую оче­редь определяется машинным временем То. При токарной обработке, мин: То= La/(nsoh), где L- расчетная длина хода резца, мм; а — величина при­пуска на обработку, мм.