Определяем усилие Q, создаваемое силовым приводом, увеличиваемое зажимным механизмом и передаваемое постоянному кулачку:
, (7.8)где iC - передаточное отношение по силе зажимного механизма (выигрыш в силе).
Для клинового механизма:
, (7.9)где a - угол наклона клина, принимаем 15˚.
j и j1 - углы трения на поверхностях кулачка и втулки и определяемые по формуле: j= arctgf1= arctg 0.1=5˚43, принимаем j = j1=6˚.
Подставив исходные данные в формулу (7.9) получим:
,принимаем ближайшее стандартное значение
Подставив исходные данные в формулу (7.8) получим:
Q=6274,55/2,3=2728 Н.
Принимаем клиновой зажимной механизм.
В начале попытаемся применить пневматический привод, так как в любом производстве имеются трубопроводы для подачи сжатого воздуха. Диаметр поршня пневмоцилиндра определяется по формуле [17,c.449]:
, (7.10)где р - избыточное давление воздуха, принимаемое в расчетах 0,4 МПа;
h = 0,9 - КПД привода.
Подставив исходные данные в формулу (7.10) получим:
При расчете по формуле (7.10) диаметр поршня получился более 80 мм, следовательно по рекомендациям [17] будем применять гидравлический привод, где за счет регулирования давления масла можно получить большие исходные усилия. При заданном усилии Q подбираем давление масла (Рг =1,0; 2,5; 5,0; 7,5 Мпа) так, чтобы диаметр поршня не превышал 80 мм.
В качестве привода принимаем гидроцилиндр двустороннего действия с рабочим давлением 1,0 МПа.
Определим диаметр поршня гидроцилиндра, подставив исходные данные в формулу (7.10):
мм.Принимаем по ГОСТ15608-81 ближайшее значение D= 63 мм.
Ход поршня цилиндра рассчитывается по формуле:
, (7.11)где Sw- свободный ход кулачков, по рекомендациям [17], принимаем5 мм;
iп=1/ ic - передаточное отношение зажимного механизма по перемещению, принимаем 2,3;
Значение по рекомендациям [14] принимаем с запасом 10…15 мм.
Подставив исходные данные в формулу (7.11) и учитывая рекомендации [14] получим:
15 мм.По результатам расчетов выполняем чертеж приспособления.
Погрешность установки определяется по формуле:
, (7.12)где εб - погрешность базирования, равная в данном случае εб=0, т.к измерительная база используется в качестве технологической; εз - погрешность закрепления (смещение измерительной базы под действием сил зажима), в данном случае εб=0; εпр - погрешность элементов приспособления, зависящая от точности их изготовления. На рисунке 7.3. представлена размерная схема патрона с клиновым зажимным механизмом.
Расчетная схема погрешностей патрона
Рис.7.3.
, (7.13)где ωАΔ - колебания замыкающего размера АΔ;
Δ1… Δ5 - погрешности, возникающие вследствие неточности изготовления размеров, из-за колебания зазоров в сопряжениях.
Точность составляющих размерной цепи задаем по 7 квалитету.
Подставив исходные данные в формулу (7.13) получим:
Погрешность установки не должна превышать величины минимального припуска на чистовую обработку
: , 0,0234<0.0652Погрешность установки не превышает установленной величины
, следовательно, точность приспособления удовлетворяет требованиям.Самоцентрирующий 3-х кулачковый патрон с клиновым зажимным механизмом предназначен для базирования и закрепления детали "Корпус гидроцилиндра" на токарном станке.
Патрон состоит из корпуса 1, в котором установлен клин 4, в наклонные пазы которого входят подкулачники 5. К подкулачникам винтами 32 с помощью сухарей 6 крепятся кулачки 7. Деталь устанавливается до упора в опору 8, которая крепится к стойке 9 корпуса 1 винтами 27. К клину 4 с помощью втулки 2, зафиксированной винтом 13 крепится винт 30. Винт 13 входит в отверстие вала. Чтобы определить радиальное положение этого отверстия, во втулке установлен подпружиненный фиксатор 34 с конической головкой. Между корпусом 1 и корпусом 3 установлены две пружины 12. К корпусу 3 винтами 25 крепится крышка 10. В отверстиях корпуса 1 и корпуса 3 установлены направляющие шпонки 16 и 11. Патрон крепится к шпинделю с помощью винтов 29. Винт 30 с помощью муфты соединен со штоком 19 гидроцилиндра.
Гидропривод установлен на конец шпинделя и крепится к станку винтами. Гидропривод содержит корпус 14, в котором на подшипниках 26 установлена крышка 9, крепящийся винтами 18 к корпусу 14 гидропривода. На конце штока 19 установлен поршень 12, закрепленный гайкой 30 со стопорной шайбой 20. Для предотвращения ударов поршня о стенки гидроцилиндра на нем установлены демпферы 25. Между подшипниками 26 установлена втулка 13. Левый подшипник фиксируется кольцом 21. Для подвода масла к гидроцилиндру в корпусе 14 имеются два отверстия с конической резьбой для крепления шлангов. Для подачи масла в рабочие полости гидроцилиндра в крышке 9 имеются каналы, выходные отверстия которых закрыты пробками. Для уплотнения в гидроцилиндре установлены уплотнительные кольца 22,23,24.
Самоцентрирующий патрон работает следующим образом. Заготовка устанавливается до упора в опору 8. При подаче воздуха в левую полость гидроцилиндра клин 4 отходит вправо, подкулачники скользят по наклонному пазу вверх и кулачок поднимается, закрепляя заготовку.
При подаче воздуха в правую полость гидроцилиндра клин 4 отходит влево, подкулачники скользят по наклонному пазу вниз и кулачок опускается, раскрепляя заготовку.
Приспособление предназначено для контроля радиального биения отверстия корпуса гидроцилиндра.
Приспособление содержит: плиту 1 к которой по средством болтов 20 и гаек 23 присоединяется чугунная стойка 8. В стойке 8 при помощи подшипников 6 и втулки 5 базируется шпиндель 3, на переднем конце которого при помощи болтов 2 крепится клиновой патрон 1. На задний конец шпинделя 3 монтируется силовой привод (пневмоцилиндр.) 9 с муфтой 10. Соединение клинового патрона 1 со штоком пневмоцилиндра осуществляется с помощью тяги 4, проходящей через центральное отверстие шпинделя. Также приспособление содержит: щуп 11, передачу рычажную 13, держатель индикатора 14, крепящийся к передаче рычажной винтом 21, пружину сжатия 22 и индикатор 15, при помощи которых происходит измерение и снятие данных; передача рычажная 13 крепится к опоре 17 винтами 16, опора в свою очередь прикреплена к плите при помощи болтов 18 и гаек 19.
Приспособление для контроля биения отверстия корпуса гидроцилиндра работает следующим образом: деталь устанавливается и закрепляется в патроне, при помощи щупа 11 осуществляется контроль биения отверстия детали за счет вращения крышки вручную и передвижения щупа 11, которое обеспечивается перемещением опоры 17 по Т-образным пазам плиты 24, данные измерений контролер считывает с индикатора часового типа 15.
Чертеж приспособления представлен на листе графической части дипломного проекта.
На токарных операциях применяются резцы с механическим креплением режущей пластины по ГОСТ 20872-73. Недостатками таких резцов являются недостаточная производительность вследствие низкой надежности закрепления режущей пластины, большое время замены пластины. Поэтому, основная задача проектирования - усовершенствование конструкции токарного резца с целью устранения указанных выше недостатков.
В качестве объекта проектирования примем токарный упорный резец, используемый при обработке торцовой поверхности заготовки на 040 токарной операции.
В качестве материала для корпуса резца выбираем сталь 40Х с
sв= =690МПа и допустимым напряжением на изгиб sи. д. = 200 МПа, режущая часть твёрдый сплав Т15К6.
2. Главная составляющая силы резания
Pz = 10·Cp·tx·Sy·Vn· Kp, H (9.1), Kp = Kмр·Kj р·Kgр·Klр (9.2),
где Kмр = 0,94. Kjр - коэффициент, учитывающий влияние главного угла в плане, принимаем по [9]: Kjрz = 0,89; Kjрy = 0,5; Kjрx = 1,17; Kgр - коэффициент, учитывающий влияние переднего угла, принимаем по [9]: Kgрz= 1,25; Kgрy= 2,0; Kgрx= 2,0. Klр - коэффициент, учитывающий влияние угла наклона главной режущей кромки, принимаем по [9]: