План изготовления - графическое изображение технологического маршрута с указанием теоретических схем базирования и технических требований на операции.
План изготовления состоит из четырех граф:
Графа "Операция", которая включает в себя название и номер операции.
Графа “ Оборудование", которая включает в себя оборудование, при помощи которого производится обработка поверхностей на данной операции.
Графа "Теоретическая схема базирования", которая включает в себя изображение детали, схему базирования (точки закрепления), простановку операционных размеров, обозначение обрабатываемых поверхностей и указание шероховатости получаемой на данной операции.
Графа “Технические требования", которая включает в себя допуски на операционные размеры и отклонения формы.
План изготовления корпуса гидроцилиндра представлен на листе графической части.
Теоретическая схема базирования представлена на плане изготовления детали и представляет собой схему расположения на технологических базах заготовки "идеальных" точек, символизирующих позиционные связи заготовки с принятой схемой координат станочного приспособления.
При разработке схем базирования учитываем принцип постоянства и совмещения баз, т.е. для наибольшей точности изготовления детали, на всех операциях обработки по возможности использовать одну и ту же базу, как установочную, так и измерительную. Так же важно учитывать правило шести точек, при котором деталь базируется на шести неподвижных точках, которые лишают её шести степеней свободы. Обработку детали начинаем с поверхности, которая служит установочной базой для дальнейших операций. Для обработки этой поверхности в качестве установочной базы приходится принимать необработанную поверхность. После этого, когда обработана установочная поверхность, обрабатываем остальные поверхности, соблюдая при этом определённую последовательность, сначала обрабатываем поверхность, к точности которой предъявляются меньшие требования, а потом поверхности, которые должны быть более точными.
Индекс около номера поверхности обозначает номер операции, на которой она получена. Индекс 00 - относится к заготовительной операции, буквы А, Б - указывают, что поверхность обработана на данной операции с установа А или Б. Арабские цифры 1,2,3 и т.д. обозначают переход на котором был получен данный размер.
В связи с тем, что корпус представляет собой тело вращения, то первоначально заготовка обрабатывается на станках токарной группы.
На 010 токарной операции в качестве черновых технологических баз используем технологические базы указанные на чертеже заготовки (см. черт) и являются цилиндрическая поверхность 13 и торцовая поверхность 1. Ось материализуем внутренними цилиндрическими поверхностями.
На 020, 040 токарных операциях в качестве двойной опорной базы используем ось поверхности 12, в качестве установочной базы торец 4. В качестве опорной базы принимаем пов.12.
На 030 токарной операциях в качестве двойной опорной базы используем ось поверхности 13, в качестве установочной базы торец 1. В качестве опорной базы принимаем пов.13.
На 050 сверлильной операции в качестве двойной опорной базы используем ось поверхности 8, в качестве установочной базы торец 1. В качестве опорной базы принимаем пов.8.
На 090 и 100 шлифовальных операциях в качестве двойной опорной базы используем ось поверхностей 12 (операция 100),13 (операция 090); в качестве установочной базы торец 1 (операция 090), 4 (операция 100); в качестве опорной базы принимаем пов.12,13 соответственно.
На 110 операции производится хромирование внутренних поверхностей корпуса (пов.12, 13). Подробное описание выбранного метода и технологии хромирования приведено в разделе 5 данного дипломного проекта.
На 120 и 130 хонинговальных операциях в качестве установочной базы используем торец 1; в качестве опорной базы принимаем пов.12, 13 соответственно.
Сведем все данные по технологическим базам и размерам, получаемым на операциях ТП в таблицу 3.2
Таблица 3.2
Технологические базы
№ операции | Название | № опорных точек | Характер появления | Реализация | Операционные размеры | Единство баз | ||
Явная | Скры - тая | Естествен-ная | Искусствен-ная | |||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
010 | УДОО | 1,2,34,56 | ++ | -+ | +++ | - | 2И20Т20П20 | ++ |
020 | УДОО | 1,2,34,56 | ++ | -+ | +++ | - | 2Б10Т10 | +++ |
030 | УДОО | 1,2,34,56 | ++ | -+ | +++ | - | 2И40, 2ИК40Т40, П40, У40, Ю40 | + |
040 | УДОО | 1,2,34,56 | ++ | -+ | +++ | - | 2Б30,2L30Т30, П30, G30Ч30 | + |
050 | УДОО | 1,2,34,56 | ++ | -+ | +++ | - | 2Н50,2М50,2К50W50, МХ50 | + |
090 | УДОО | 1,2,34,56 | ++ | -+ | +++ | - | 2И90 | + |
100 | УДОО | 1,2,34,56 | ++ | -+ | +++ | - | 2Б100 | + |
120 | УДОО | 1,2,34,56 | ++ | -+ | +++ | - | 2И120 | + |
130 | УДОО | 1,2,34,56 | ++ | -+ | +++ | - | 2Б130 | + |
Способ простановки операционных размеров выбираем в зависимости от метода достижения точности. Для выполнения выше рассмотренных операций применяем метод достижения точности размеров с помощью настроенного оборудования. В этом случае имеет место несколько вариантов простановки операционных размеров, получение которых зависит от технологических возможностей применяемого оборудования. Так как при разработке технологического процесса изготовления детали использовалось стандартное и универсальное оборудование, то было бы целесообразно применить координатный способ простановки операционных размеров.
1. Заготовительная операция: все требования, предъявляемые к отливки по качеству и точности назначаем согласно рекомендациям ГОСТ 25545-85 (см. п.2.2).
2. Допуски на операционные размеры в осевом направлении рассчитываем по следующим формулам:
для операции 010 - токарной:
TAi= wicт+ с. м., (3.1)
где TAi- допуск на размер А на i-той операции;
wicт - статистическая погрешность на i-той операции;
с. м. - смещение формы и стержня, возникающее на заготовительной операции;
для операции 020 - токарной;
для операции 030,040 - токарной:
TAi= wicт + Üi, (3.2)
где TAi- допуск на размер А на i-ой операции;
wicт - статистическая погрешность на i-той операции;
Üi- величина торцового биения, определяемая по прил.2 [4].
3. Допуски на диаметральные размеры назначаются, исходя из квалитета точности, который обеспечивает оборудование в радиальном направлении. Его выбираем по прил.1 [2], значения допусков берутся из [8].
4. Значения погрешностей формы на диаметральные размеры назначаем, руководствуясь прил.2 [4]. Величина отклонения от соосности определяется как половина погрешности радиального биения.
Шероховатость, получаемую при обработке поверхностей, назначаем с учетом рекомендаций (прил.1 [4]).
На самую точную поверхность определим припуски расчетно-аналитическим методом, разработанным В.М. Кованом [9]. Согласно этому методу величина минимального припуска должна быть такой, чтобы при его снятии устранялись погрешности обработки и дефекты поверхностного слоя, полученные на предыдущих технологических переходах, а также погрешность установки заготовки, возникающая на выполняемом переходе. На остальные поверхности припуски назначаем табличным способом по [9].