Смекни!
smekni.com

Технологія і устаткування для переробки бензолу (стр. 22 из 24)

В усіх випадках зниження поглинальної чи здатності питомої витрати розчину, що надходить на скрубери, необхідно в першу чергу привести хімічний склад ненасиченого розчину у відповідність із заданим технологічним режимом шляхом відновлення ступеня регенерації сірководню до заданої, висновком підвищених кількостей баластових солей, поповнення циклу свіжим розчином із заданими властивостями, промивання, очищення комунікацій і апаратури від опадів баластових солей.

Відхиленні режиму по температурних параметрах усуваються зміною чи витрати температури енергоносіїв, очищенням і промиванням поверхонь теплообменной апаратури. Питома витрата поглинача визначається не тільки ето сероемкостью, але і кількістю очищеного газу і змістом у ньому сірководню. Зміни цих параметрів, особливо тривалі повинні компенси роваться чи збільшенням зменшенням питомої витрати поглинача.

Технологічний режим відділення мокрого каталізу з одержанням сірчаної кислоти визначається наступними параметрами:

У процесі мокрого каталізу повинна бути отримана кислота концентрації 93—94% з мінімальним змістом оксидів азоту.

Основними факторами, що визначають повноту окислювання сірководню в сірчану кислоту і якість сірчаної кислоти, є: кількість повітря, подаваного на різні ступіні окислювання, і температура сірководневого газу, подаваного в пек-казан. Чим нижче температура сірководневого газу, насиченого парами води, тим менше вноситься пар води в систему мокрого каталізу, тим вище концентрація сірчаної кислоти. Кількість повітря па різних стадіях процесу окислювання визначає повноту окислювання й у той же час зміст у кислоті оксидів азот(а, наявність яких перешкоджає її застосуванню в деяких виробництвах. З погляду максимального використання вторинних ресурсів тепла варто було б усе тепло реакції окислювання сірководню до сірчистого ангідриду одержати в печі-казані. При цьому окислювання повинне йти зі значним надлишком повітря, що приведе до часткового окислювання 5ПРО2 у 5ПРО3, що володіє значно більшою корозійною активністю, чим 5ПРО2, а також до окислювання ціаністого водню в оксид азоту, що у контактному апараті окисляється до диоксида азоту, що розчиняється в сірчаній кислоті. Тому процес окислювання в печі-казані ведуть із придухою, у цьому випадку ціаністий водень окисляється тільки до елементарного азоту, практично не утвориться 803, однак і сірководень окисляється не цілком і частину його (до 2,5%) залишається в продуктах чи згоряння окисляється до елементарної сірки. У Зв'язку з цим виникає необхідність допалити його в спеціальній камері дожигания, розташованої після казана-утилізатора. У цю камеру дається повітря в кількості, необхідному для повного окислювання, що залишилося в газі чи сірководню сірки, при цьому кількості повітря окислювання азоту в N0 не відбувається, а незначна кількість 503, що тут може утворитися, уже не приведе до корозії казана-утилізатора. Показником, що свідчить про те, що повітря в камеру дожигания подають у необхідній кількості, є ріст температури продуктів окислювання на 25—30°С; якщо ріст температури менше, повітря мало, більше — занадто багато.

Наступним етапом змішання продуктів окислювання з повітрям є камера змішання. У неї надходять продукти окислювання після камери дожигания з температурою 805—810°С. При такій температурі процес контактування йде погано через сильний розігрів контактної маси, тому в камеру подають така кількість повітря, що забезпечує зниження температури суміші до 420—450 С. Суміш, що надходить, при окислюванні 802 у 5ПРО3 на двох верхніх шарах контактної маси розігрівається за рахунок тепла реакції окислювання, до 460-470 С, що погіршує умови " контактування, тому після другого шару контактної маси в продукти контактування знову подають холодне повітря і знижують їхню температуру до 425-430 С. Таким чином, головною задачею персоналу у відділенні мокрого каталізу є підтримка заданого температурного режиму процесу шляхом зміни кількості повітря, подаваного на різні його стадії.

Істотне значення має і температура кислоти після абсорбера: чим нижче ця температура, тим більше пар сірчаної кислоти конденсується в абсорбері, тим менше їхня кількість надходить у электрофильтр, тим більше повне очищення вихлопних газів досягається в ньому. Зниження цієї температури може бути досягнуте за рахунок поліпшення охолодження кислоти в зрошувальних холодильниках.

Аналіз технології очищення газу і виробництва сірчаної кислоти по вакуум-карбонатному способі показує, що в процесі закладені визначені можливості зниження енерговитрат і рактивов. Крім розглянутих вище шляхів використання тепла коксового чи газу аміачної води замість пари для пагрева поглинального розчину до них варто віднести збільшення частки поташу в содопоташтгой чи суміші перехід па уловлювання сірководню поташным розчином. Це різко підвищить сероемкость розчину, знизить його питома витрата і відповідно питомі витрати пари, води, електроенергії на 1 т уловленого сірководню. Цьому перешкоджають дві обставини: дефіцит поташу й утворення значних кількостей ферроцианида калію і 'муравьинокислого калію. Рішення цієї задачі може бути знайдене шляхом регенерації поташу з баластових солей. Відома схема, по якій поглинальний розчин, виведений з циклу, упаривают під вакуумом, кристалізують, з виділенням в опадах ферроциапида і сульфату калію, матковий розчин повторно упаривают і кристалізують, причому в осад випадає до 60% поташу, що міститься в розчині, що повертають у робочий розчин. Осад ферроцнанида і сульфату калію спалюють разом з матковим розчином, що залишився, у спеціальній печі у відбудовній атмосфері й одержують розплав, що містить 40-60% Кас03, 25-35% Кзз, 15-20% ДО2504, 2-3% КСМ5 і 10-15% 8282ПРО3, що псується в робочий цикл.

Технологічний режим мышьяково-содовой сероочист-I визначається наступними основними параметрами.

Вихідними матеріалами для готування робітника 1створу є: білий миш'як Ай2Оз, ангідрид мышья-шистой кислоти, зміст Аз203 у технічному проекті повинне бути не менш 95 (I сорт) і 90% (II сорт), летучого залишку відповідно 5 і 10%; кадьниниро-шная сода.

Концентрація миш'яку в робочому розчині поглинь-?ля установлюється відповідно до змісту се-1водню у вихідному газі, при цьому співвідношення 5203 до Н25 підтримують близько 15, тобто процес ведуть зі збитком Аз30а.

Питома витрата поглинального розчину також визначається змістом сірководню в газе и концентрацією миш'яку в розчині. Так, для найбільше що часто зустрічаються значень змісту сірководню в газі 10, 16 і 20 г/м3 концентрація миш'яку в розчині складає відповідно 10, 16 і 16 г/л, а питома витрата розчину—15, 16 і 19 г/м3 газу. Таким чином, для коксового газу зі змістом сірководню 16—18 г/м3 (звичайне для шихт із донецьких вугіль) концентрація миш'яку повинна підтримуватися на рівні 16 г/л, а витрата розчину—18—19 л/м3. Поглинальний розчин відрізняється помітною корозійною активністю, що трохи знижується при надлишку миш'яку; важливу роль у зниженні корозійної активності розчину грає величина • лужності розчину, що повинна підтримуватися на рівні рН = 7,8ч-7,9. Зниження лужності веде до зменшення кількості нерегенерируемых баластових солей і до росту корозійної активності розчину. У робочому розчині завдяки протіканню поряд з основними побічних реакцій відбувається безупинне нагромадження баластових солей — гипосульфата натрію МаЕЙ2ПРО3 і роданистого натрії.

Нагромадження цих солей у розчині веде до росту його в'язкості і зниженню сероемкости. Тому частина розчину повинна безупинно виводитися з циклу на нейтралізацію баластових солей для того, щоб граничний зміст їх у розчині не перевищувало 300—350 г/л.

Таким чином, робітник поглинальний розчин повинний містити приблизно 16 г/л А52ПРО3, 12—14 г/л КагСОя, не більш 300 г/л баластових солей, в основному, гипосульфита і роданида натрію, мати лужність рН = = 7,8ч-7,9; питома витрата такого розчину повинний складати 18—19 г/м3 газу.

Важливим фактором, що обумовлює ефективність уловлювання сірководню, є повне очищення газу від бензолу, нафталіну й особливо бризів поглинальної олії, уносимых з газом з бензольних скруберів. Для очищення газу від слідів поглинальної олії газ перед уловлюванням з пего сірководню очищається від слідів олії в спеціально встановленому для цієї мети электрофильтре.

Щоб уникнути конденсації з газу в розчин пар поды, олій, смолистих речовин поглинальний розчин перед подачею на скрубери підігрівають до 40—42"С.

Регенерація розчину виробляється продувкою його повітрям,

У регенератор повітря надходить через спеціальні барбснажные пристрої, що розбивають струмінь повітря на дрібні пухирці. Під дією кисню повітря відбувається окислювання сульфо-мышьяковой солі з виділенням елементарної сірки. Цей процес можна значно інтенсифікувати шляхом збагачення повітря киснем до 30—35%. Разом з тим пухирці повітря, подымаясь нагору черз шар розчину, захоплюють за собою частки елементарної сірки, що утворилися; відбувається так називаний процес флотації сірки, що веде до утворення на поверхні розчину в регенераторі шаруючи сарною піни, що містить до 100 г/л елементарної сірки. Процес флотації надзвичайно чуттєвий до наявності в чи розчині в повітрі, подаваному на регенерацію, маслянистих, смолистих і інших домішок. Ці домішки перешкоджають спливанню (флотації) сірки, вона залишається в регенерованому розчині і відкладається в комунікаціях, апаратурі, на насадці скруберів. Тому украй важливим для успішного проведення процесу регенерації є не тільки очищення газу від слідів олій перед уловлюванням з нього сірководню, але і повне очищення повітря від слідів олій і пилу перед його надходженням у регенератор.