Смекни!
smekni.com

Конструкция, методика расчёта мартеновских печей черной металлургии (стр. 2 из 4)

Наиболее ответственным элементом регенераторов является их насадка. Правильно выбранное соотношение основных размеров насадки регенераторов и сечения ее ячеек обеспечивает необходимый тепловой режим работы мартеновской печи.

Отношение суммы объемов воздушной и газовой насадок (пары насадок) к площади пода в современных газовых печах составляет 4,3 – 5,5 м3/м2 (первая цифра относится к большим печам).

Температура дыма на входе в регенератор достигает 1550 – 1600°, а на выходе из насадок – около 700 – 800о.

Борова служат для отвода продуктов сгорания из регенераторов печи в котел-утилизатор или дымовую трубу.

Температура дыма в боровах колеблется от 500 до 850о .

Регенеративные печи и, в частности, мартеновские, -по характеру движения в них газов относятся к реверсивным, V е. печам с периодически изменяющимся направлением движения газов. Изменение направления движения газов осуществляется при помощи перекидных клапанов.


1.3 Кладка мартеновской печи

Огнеупорный кирпич, применяемый для кладки рабочего пространства, работает в наиболее тяжелых условиях. Он должен отличаться высокой огнеупорностью хорошей строитель прочностью при высоких температурах (до 1800о) и устойчивостью против механического и физико-химического воздействия материалов плавки.

Для кладки рабочего пространства широкое распространение получили основные огнеупоры. В настоящее время в большинстве случаев свод выкладывают из термостойкого хромомагнезита.

Применение магнезитохромитовых огнеупоров для кладки свода позволило повысить не только производительность печи, но и стойкость свода. Стойкость свода увеличилась в 2 – 2,5 раза по сравнению с динасовым сводом и достигла 600 и более плавок. Стены печи снизу до верхнего уровня шлака обычно выкладывают из магнезитового кирпича. Остальная часть – из хромомагнезита (при основном своде), либо из динаса с промежуточным слоем в 1 – 2 хромомагнезитового кирпича (при динасовом своде).

Под основной печи выкладывают по высоте из нескольких рядов различных огнеупоров. Верхний слой толщиной 470 – 565 мм выкладывают из магнезитового кирпича, поверх которого идет слой магнезитовой наварки толщиной около 250 мм. Кладку головок и вертикальных каналов для печей с основным сводом в последнее время (выполняют из хромомагнезитового кирпича, а внутренняя часть металлического кессона футеруется высокоглиноземистым или термостойким хромо-магнезитовым кирпичом.

Верхнюю часть насадки и внутренних стен регенеративной камеры часто выполняют из динасового огнеупора, остальную – из шамота. В настоящее время верхнюю часть насадок стали выкладывать из форстеритового или высокоглиноземистого огнеупоров, которые мало реагируют с плавильной пылью и более стойки.


2 Тепловая работа мартеновской печи

Под тепловой работой понимают совокупность всех тепловых процессов, совершающихся в печи. Основными из них являются обеспечение подвода в плавильное пространство печи требуемого количества тепла (получаемого главным образом в результате сжигания топлива) и передача его материалам мартеновской плавки. От интенсивности передачи тепла твердой шихте или жидкой ванне зависит скорость нагрева и плавления шихто­вых материалов и качество работы мартеновской печи в целом.

Большая часть различных мер (совершенствование конструкции головок и печи в целом, организация факела и режима завалки и т. д.) направлена на то, чтобы создать условия, при которых максимум подведенного тепла в печь передавался бы непосредственно металлу.

Как известно, чем выше разность температур между теплообменными поверхностями, тем больше тепла передается нагреваемому телу в единицу времени. Следовательно, для ускорения плавки необходимо стремиться поддерживать максимальную разность температур между поверхностью твердой шихты или жидкой ванны и температурой печи.

В настоящее время, благодаря применению топлива высокой теплоты сгорания, а также вследствие высокого подогрева газа и воздуха, обогащения воздуха кислородом и т. д. можно получить температуру в печи до 2000° и выше почти в течение всей плавки. Однако по условию службы огнеупоров температура их внутренней поверхности не может превышать определенное значение (динас –1680°, хромомагнезит – 1750 – 1800°), что ограничивает температурный уровень печи и, следовательно, интенсивность теплообмена.

Вследствие высоких температур в рабочем пространстве печи (выше 1700°) основную роль в передаче тепла играет излучение (более 90% от всего тепла, получаемого ванной, передается излучением).

Если принять, что все тепло металлу (ванне) передается только излучением и считать, что поверхность металла имеет какую-то среднюю температуру Тм, то теплообмен между поверхностью металла и рабочим пространством печи в целом (пламенем и внутренней поверхностью стен и свода) может быть выражен уравнением

ккал/час,

где

– тепловой поток, передаваемый металлу, ккал/час;

– приведенная степень черноты пламени, кладки, металла;

– 4,96 – коэффициент излучения абсолютно черного тела, ккал/м2 час. град4;

– температура печи, °К;

– температура поверхности металла, °К;

– поверхность металла (ванны), м2.

Из этого уравнения следует, что величина

зависит не только от разности температур, но и от величины поверхности теплообмена
и приведенной степени черноты, в частности от степени черноты пламени
.

Следовательно, передача тепла металлу может быть увеличена не только за счет повышения разности температур печи и металла, но и за счет увеличения степени черноты пламени

(степени черноты поверхности ме­талла, шлака и кладки достаточно высоки 0,7 – 0,95 и в отличие от черноты пламени практически не поддаются регулированию), а также и поверхности металла
.

Кроме того, из уравнения видно, что чем ниже температура поверхности металла

, тем больше величина
. Температура же поверхности металла
при прочих равных условиях зависит главным образом от свойства металла отводить тепло, переданное на его поверхность, во внутренние слои, т. е. от его теплопроводности.

Если теплопроводность металла низкая, то температура его поверхности быстро повышается, что соответственно вызывает уменьшение

. И наоборот, высокая теплопроводность металла обеспечивает быстрый отвод тепла во внутренние слои. При этом температура поверхности металла будет более низкой по сравнению с первым случаем и, следовательно, количество тепла, переданное металлу за тот же промежуток времени, будет значительно больше.

Таким образом, на скорость нагрева и, следовательно, на длительность плавки влияют не только условия внешнего теплообмена, но в значительной мере и условия передачи тепла внутри нагреваемого материала.

Степень влияния отдельных факторов на скорость нагрева сильно меняется по ходу плавки, поэтому для обеспечения высокопроизводительной и экономичной работы мартеновской печи необходимо знать особенности теплообмена в каждый период плавки.

Длительность одной плавки по организационно-технологическим и теплотехническим признакам разбивается на следующие периоды:

1) заправку;

2) завалку;

3) прогрев (если печь работает на жидком чугуне, то этот период отсутствует);

4) плавление (включая время заливки чугуна при работе на жидком чугуне);

5) доводку.

2.1 Период заправки печи

Его назначение – устранить нарушения в кладке подины, вызванные механическими и физико-химическими воздействиями на нее шихтовых материалов предыдущей плавки. В этот период печь работает как бы в холостую, так как металла в ней нет, и тепло расходуется только на поддержание ее рабочей температуры. Основная задача этого периода с теплотехнической точки зрения предотвратить охлаждения кладки печи, особенно пода, так как это приводит к удлинению плавки.

Для уменьшения охлаждения кладки печи в этот период необходимо использовать все возможности для сокращения длительности заправки, а также свести до минимума подсосы холодного воздуха в печь.

Тепловую нагрузку в этот период следует поддерживать на 15 – 20% выше тепловой нагрузки холостого хода.

2.2 Период завалки

Это время, необходимое для завалки твердой шихты в печь. Этот период характеризуется наиболее благоприятными условиями для передачи тепла шихте.

К ним относятся: низкая температура и большая поверхность твердой шихты; возможность проникновения горячих газов в толщу слоя шихты, т. е. возможность развития конвективного теплообмена (до 15%); отсутствие опасности поджога свода и т. д.

Низкая температура кладки и высокая способность шихты поглощать тепло позволяют держать максимально возможные тепловые нагрузки в этот период.