Смекни!
smekni.com

Холодильное оборудование торговых предприятий (стр. 2 из 8)

Конечной целью сельхозпроизводителей является реализация продукции по наиболее выгодной цене. В связи с этим, особое значение имеет вопрос продления периода реализации, что позволяет существенно повысить конкурентоспособность продукции и получить больший доход.

Существует несколько основных способов хранения плодоовощной продукции в свежем виде. Это хранение плодов в неохлаждаемом хранилище, в холодильниках с обычной атмосферой (ОА), в регулируемой газовой среде (РГС). Хранение плодов в неохлаждаемом хранилище является наиболее доступным способом, однако, процент брака здесь наиболее высок: плоды сохраняются значительно меньший срок по сравнению с хранением в обычных холодильниках или в холодильниках с РГС. Хранение плодов в обычной холодильной камере имеет ряд значительных преимуществ, в основном благодаря возможности более быстрого охлаждения продукции в камере, что замедляет развитие различных физиологических заболеваний плодов. Хотя строительство холодильника - "удовольствие" довольно дорогое, и его содержание обходится дорого, затраты возвращаются очень быстро. Цены на яблоки или груши после 3-4 месяцев хранения возрастают примерно в 2 раза в сравнении с ценами после сбора.

Еще более эффективным способом сохранить твёрдость, сочность, свежесть, хрустящую консистенцию, вкус плодов является хранение в регулируемой газовой среде, которую создают:

В полимерных пленках

В полиэтиленовых пакетах с диффузионными вставками

В холодильных камерах

Простейшей разновидностью газового хранения плодов является использование синтетических полимерных пленок (полиэтилена и др.), селективно проницаемых для газов. В пакетах из полиэтилена, в которые помещают плоды, естественным путем создается определенная газовая среда, увеличивается концентрация СО2 и снижается содержание кислорода благодаря дыханию самих плодов. Через пленку происходит диффузия газов: СО2 диффундирует в окружающую среду со скоростью, величина которой определяется разницей между концентрациями СО2 внутри и снаружи пленочной упаковки, а также газопроницаемостью пленки и величиной площади поверхности упаковки. Диффузия кислорода внутрь пакета возрастает по мере потребления его плодами в процессе дыхания. Обычно проницаемость пленок для СО2 в 2-5 раз выше, чем для кислорода. Благодаря этому для СО2 раньше достигается равновесная концентрация, чем для кислорода. Степень испарения влаги можно регулировать перфорацией пленки, причем количество и размеры ячеек (отверстий в пленке) обусловливаются видом плодов и овощей и условиями хранения в розничной торговле.

Контейнеры из полиэтилена толщиной 150-180 мкм и емкостью от 0,3 до 1 тонны плодов представляют собой большие мешки, в одной из стенок которых вставлена силиконовая (диффузионная) пленка заданного размера. Силиконовая пленка пропускает СО2 в 5-6 раз быстрее, чем кислород, благодаря чему в контейнерах возникает желаемый газовый режим. Яблоки в таких контейнерах сохраняются на 5-6 недель дольше, чем при обычном хранении в холодильниках. Недостатком этого способа является образование конденсата на внутренней поверхности пленки, если не до конца удалить теплоту дыхания. В холодильниках с РГС можно контролировать процентный состав кислорода, углекислого газа. После заполнения камеры продукцией постепенно изменяется состав атмосферы в камере: снижается процент кислорода и повышается содержание углекислого газа. В нормальной атмосфере наличие углекислого газа доходит до 0,03%, кислорода — до 21%. В камере, заполненной плодами, количество углекислого газа достигает нескольких процентов. Его количество должно быть контролируемым, поскольку высокая концентрация СО2 может повредить продукции. При излишке углекислого газа часть его удаляют химическим способом с помощью извести или активированного угля. Если процент СО2 упал ниже допустимого уровня, в камеру впускают немного свежего воздуха. В холодильнике с РГС дополнительно нужно контролировать процентный состав атмосферы. Развитие техники для хранения плодов сделало контроль и регулирования всех процессов, которые происходят в камерах, автоматическим. Как вспомогательное средство также применяют обработку плодов и овощей озоном. Озон обладает мощным бактерицидным действием, способен эффективно разрушать различные виды плесневых грибов и дрожжей. Одновременное обеззараживание, детоксикация и дезинсекция способствуют длительному сохранению плодоовощной продукции. При этом практически полностью сохраняются органолептические и физико-химические свойства, исключается интоксикация остаточными химическими веществами. Овощи и фрукты имеют отличную потребительскую привлекательность, высокую сохранность питательных и вкусовых качеств.

Новое слово в технологиях хранения плодов и овощей - использование химических регуляторов роста, применяемых в качестве средств управления биологическими процессами на гормональном уровне. Наиболее важный из этих гормонов, отвечающий за созревание, - этилен. Участие этилена в регуляции роста растений было открыто Д.Н. Нелюбовым в Петербургском государственном университете в 1901 году. Известно много препаратов, применяемых для снижения эффектов действия этилена. В сельском хозяйстве многих стран мира используют препараты на основе таких химических соединений, как диазоциклопентадиен (DACP), тиосульфат серебра (STS), аминоэтоксивинилглицин (AVG), 2,5-норборадиен (NBD), аминооксиуксусная кислота (AOA), а так же препараты на основе двуокиси углерода. Однако эти препараты обладают рядом существенных недостатков: одни обладают обратимым действием или ингибируют синтез лишь эндогенного этилена, не оказывая влияния на экзогенный, другие показывают высокое остаточное содержание в плодах после обработки, третьи дороги в утилизации или имеют неприятный запах. Исследования по синтезу замещенных циклопропенов впервые проводились еще в 20-х годах прошлого века в Советском Союзе, но влияние их на биосинтез этилена было открыто только в 90-х.

Отечественное ноу-хау, препарат «Фитомаг», на основе 1-метилциклопропена является уникальной совместной разработкой Всероссийского научно-исследовательского института садоводства им. Мичурина и Российского химико-технологического университета им. Менделеева. Эффективный в ингибировании эндогенного и экзогенного этилена в климактерических овощах и фруктах (яблоки, груши, слива, алыча, абрикос, персик, нектарины, бананы, хурма, кабачки, капуста, томаты, огурцы, арбузы, дыни, зеленые культуры и многие др.), препарат абсолютно безопасен для человека и животных.

Для обработки плодоовощной продукции с целью увеличения сроков хранения достаточно выполнения следующих условий: Обрабатываемые овощи или фрукты должны находиться в замкнутом, герметичном пространстве. Это может быть холодильная камера как с обычной, так и с регулируемой атмосферой, специально оснащенный контейнер для морских перевозок или перевозок автомобильным и железнодорожным транспортом, рукав из особой барьерной пленки.

Закладываемые плоды должны быть сняты в стадии съемной зрелости в садах с высоким урожаем и качеством продукции. Не рекомендуется использовать партии плодов, снятые с малоурожайных, сильнорастущих молодых насаждений (первого года плодоношения); с деревьев с сильно загущенной кроной и имеющих небольшое количество семян. Съем плодов должен производится в оптимальные сроки, определяемые по комплексу показателей, основные из которых: индекс йод-крахмальной пробы, внутреннее содержание этилена, твердость. Для обработки используются партии плодов на срезе которых сердцевина не окрашивается, а степень окраски остальных тканей составляет 60-70%. Содержание эндогенного этилена в среднем должно составлять 0,1-1,0 ppm (частей на миллион). Однако не всегда удобно герметизировать грузовой контейнер. В этом случае используют полимерные барьерные пленки с модифицированной атмосферой внутри (МА), в которые заключают требуемое количество плодов, например ящиков с бананами. Включение в газовую среду 1-метилциклопропена также исключает возникновение и развитие многих физиологических заболеваний. Наиболее широкое применение в нашей стране данная технология находит в садоводстве при обработке яблок.


2. Сублимационная сушка

Сублимация (позднелатинское sublimatio — возвышение, вознесение, от латинского sublimo — высоко поднимаю, возношу), возгонка, переход вещества из кристаллического состояния непосредственно (без плавления) в газообразное; происходит с поглощением теплоты. Сублимация — одна из разновидностей, возможна во всём интервале температур и давлений, при которых твёрдая и газообразная фазы сосуществуют. Необходимая для сушки энергия называется теплотой. Зависимость между теплотой сушки, давлением насыщенных паров над твёрдым телом и температурой в условиях равновесного перехода выражается уравнением Клапейрона - Клаузиуса. Сушка металлических кристаллов приводит к образованию одноатомных паров; ионные кристаллы, испаряясь, часто образуют в газовой фазе полярные молекулы; молекулярные кристаллы образуют пары, состоящие из молекул. Основной кинетической характеристикой сушки является скорость сушки — масса вещества, сублимирующего в единицу времени. Зависимость предельной скорости сушки веществ от температуры и свойств газообразной фазы определяет их выбор для теплозащиты космических аппаратов. Сушка широко применяется также для очистки твёрдых веществ (возгонка с последующим выращиванием чистых кристаллов в газовой среде). То есть, сублимационная сушка продуктов (сублимационная вакуумная сушка, также известная как лиофилизация или возгонка) - это удаление влаги из свежезамороженных продуктов в условиях вакуума.

В настоящее время этот метод сушки продуктов является наиболее совершенным, но в то же время и наиболее дорогостоящим. Этот способ был открыт в начале прошлого века, однако использовался только для производства довольно ограниченного количества и ассортимента сухопродуктов для нужд армии и космонавтики. Принцип сублимационной сушки основан на том физическом факте, что при значениях атмосферного давления ниже определенного порога - т.н. "тройной точки" (для чистой воды: 6,1 мбар при 0 градусов Цельсия) вода может находиться только в двух агрегатных состояниях - твердом и газообразном, переход воды в жидкое состояние в таких условиях невозможен. И если парциальное давление водного пара в окружающей среде ниже чем парциальное давление льда, то лед продукции прямо переводится в газообразное состояние, минуя жидкую фазу.