Смекни!
smekni.com

Методы кинематического исследования механизмов (стр. 6 из 6)

1) Плоский кулачок с качающимся толкателем. 1-кулачок, 2-толкатель, 3-ролик, 4-силовой элемент (пружина).

2)Плоский кулачок с поступательно перемещающимся толкателем.

3)Пространственный кулачок.

Основные этапы проектирования кулачкового механизма

1)Выбор схемы кулачкового механизма, 2)Определение закона движения толкателя, 3)Выбор основных размеров кулачкового механизма, 4)Профилирование кулачка.

vT=ST¢∙ωK,

где S¢T – аналог скорости толкателя,

dS/dφk, aT≈ST¢¢∙ωK2, aT=ST¢¢∙ωK+ST¢∙EK, ST¢¢=d ST¢/dφk≈ ∆ST¢/∆φ= ST¢/∆φ


при Δφ→0, ST¢¢→ ∞, что соответствует жесткому удару (скачкообразно изменяется аналог скорости толкателя ST¢)

jП – фаза подъема толкателя. 1– жесткий удар, 2–мягкий удар (скорость толкателя нарастает быстрее), 3, 4, 5– безударное движение.

Графические методы определения закона движения толкателя

Схема механизмам поступательно движущимся толкателем

Закон движения ведомого звена (толкателя)

Определение минимальных размеров кулачка

Режим самозаклинивания толкателя – когда толкатель не может передвигаться. r0 – минимальный радиус. Для кулачков с поступательным движением толкателя угол давления (α) не более 300. Для кулачков с качающимся толкателем угол давления (α) допускается до 450.

По основной теореме зацепления:

wK/wT=KOT/OKK = ℓT/DB

(по подобию треугольников),

DB = ℓTwT/wK, S¢×wK = VT. tgq=DN/NOK = [(ℓT+ST¢)–a×cosjT]/[a×sinj], q–угол зацепления.

a×sinjT × tgq + a×cosjT = (ℓT+ST¢), a=(ℓT+ST¢)/ (sinjT × tgq + cosjT)

r0 = Ö(a2+ℓT2–2aℓTcosjT0)

Определение действительного профиля кулачка

⌠xB=a-eTcosφTK)

│yB=eTsinφTK)

(x-xB)2+(y-yB)2=r2

-2(x-xB)∙dxB/dφK–2(y-yB)∙dyB/dφK=0

(x-xB)= -(y-yB)(dyB/dφK)/(dxB/dφK)

(y-yB)2 ∙[(dyB/dφK)/(dxB/dφK)]2+(y-yB)2=r2,

(y – yB)2 = r2 × (dxB/djK)2 / [(dxB/djK)2 + (dyB/djK)2], y = yB ± r × (dxB/djK) / Ö[(dxB/djK)2 + (dyB/djK)2]

x = xB ± r × (dyB/djK) / Ö[(dxB/djK)2 + (dyB/djK)2]