Смекни!
smekni.com

Моделирование нагрева асинхронного двигателя (стр. 4 из 12)

Для соответствия выражения (2.11) первому уравнению системы (1.20) добавим и вычтем из (2.11)

. В результате простых алгебраических преобразований получим уравнение соответствующее первому уравнению системы (1.20):

. (2.12)

Аналогично поступаем со вторым уравнением системы (2.7). Подставив в него выражения (2.8) и (2.10) получим:

. (2.13)

Для соответствия выражения (2.13) второму уравнению системы (1.20) добавим и вычтем из (2.13)

. В результате простых алгебраических преобразований получим уравнение соответствующее второму уравнению системы (1.20):

. (2.14)

Обозначим:

; (2.15)

; (2.16)

; (2.17)

; (2.18)

. (2.19)

Ниже будет показано, что потери в роторе Ррот пропорциональны току статора, что позволяет объединить Рм и Ррот (2.18), Рст и Ррот (2.19).

Выражения (2.15) – (2.19) позволяют определить коэффициенты теплоотдачи и потери, необходимые для построения тепловой модели асинхронного двигателя, используя тепловые сопротивления эквивалентной тепловой схемы двигателя.

2.2.2 Расчет тепловых сопротивлений

Тепловые сопротивления для эквивалентной тепловой схемы рассчитываются по методике, приведенной в [2].

1) Сопротивление аксиальное меди статора (тепловое сопротивление между пазовой и лобовой частями обмотки)

, (2.20)

где lп – длина паза, м;

lл – средняя длина одной лобовой части, м;

λм – коэффициент теплопроводности меди, Вт/(м∙0С);

Fм – площадь поперечного сечения меди в пазу, м2;

Z1 – число пазов статора.

2) Тепловое сопротивление между медью статора и внутренним воздухом

, (2.21)

где R'л,вш – тепловое сопротивление внешней (обращенной к станине) продуваемой лобовой части обмотки, 0С / Вт;

R''л,вш – тепловое сопротивление внешней (обращенной к станине) непродуваемой лобовой части обмотки, 0С / Вт;

R'л,вт – тепловое сопротивление внутренней (обращенной к станине) продуваемой лобовой части обмотки, 0С / Вт;

R''л,вт – тепловое сопротивление внутренней (обращенной к станине) непродуваемой лобовой части обмотки, 0С / Вт.

Тепловое сопротивление между внешней продуваемой лобовой частью обмотки и внутренним воздухом:


, (2.22)

где bп – средняя ширина паза, м;

hп,эф – эффективная по меди высота паза, м;

lл,п – продуваемая длина лобовой части, м;

δокр – толщина окраски лобовых частей, м;

λокр – коэффициент теплопроводности окраски лобовых частей, Вт/(м∙0С);

Z1 – число пазов статора;

λэкв – эквивалентный коэффициент теплопроводности обмотки, Вт/(м∙0С);

αл,вш – коэффициент теплоотдачи внешней поверхности лобовых частей обмотки статора, Вт/(м20С).

Эквивалентный коэффициент теплопроводности обмотки:

, (2.23)

где kз – коэффициент заполнения паза;

dи – диаметр изолированного провода, мм;

kп – коэффициент пропитки обмотки;

Тср – средняя температура обмотки;

λп – коэффициент теплопроводности пропиточного состава;

λи – коэффициент теплопроводности изоляции проводов.

Коэффициент теплоотдачи внешней поверхности лобовых частей обмотки статора:


, (2.24)

где λв – коэффициент теплопроводности воздуха, Вт/(м∙0С);

Dл,вш – внешний диаметр лобовой части, м;

Nuвш – число Нуссельта для внешней поверхности лобовых частей.

Число Нуссельта для внешней поверхности лобовых частей:

, (2.25)

где Reвш – число Рейнольдса для внешней поверхности лобовых частей.

Число Рейнольдса для внешней поверхности лобовых частей:

, (2.26)

где uрот – окружная скорость ротора, м/с;

ν – кинематическая вязкость воздуха, м2/с.

Тепловое сопротивление между внешней непродуваемой лобовой частью обмотки и внутренним воздухом:

, (2.27)

где hп,эф – эффективная по меди высота паза, м;

lл,в-длина вылета лобовой части обмотки, м.

Тепловое сопротивление между внутренней продуваемой лобовой частью обмотки и внутренним воздухом:


, (2.28)

где αл,вт – коэффициент теплоотдачи внутренней поверхности лобовых частей обмотки статора, Вт/(м20С).

Коэффициент теплоотдачи внутренней поверхности лобовых частей обмотки статора:

, (2.29)

где Nuвт – число Нуссельта для внутренней поверхности лобовых частей;

Число Нуссельта для внутренней поверхности лобовых частей:

, (2.30)

где Reвт – число Рейнольдса для внутренней поверхности лобовых частей.

Число Рейнольдса для внутренней поверхности лобовых частей:

, (2.31)

где Dл,вт – внутренний диаметр лобовой части, м.

Тепловое сопротивление между внутренней непродуваемой лобовой частью обмотки и внутренним воздухом:


. (2.32)

3) Тепловое сопротивление между медью статора и сердечником статора

, (2.33)

где Rд,п – сопротивление отводу теплоты через дно паза, 0С / Вт;

Rз – термическое сопротивление зубца, 0С / Вт;

Rп,з – тепловое сопротивление между пазовой частью обмотки и зубцами, 0С / Вт;

Rсп – сопротивление учитывающее разное сопротивление спинки сердечника собственному и внешнему тепловым потокам, 0С / Вт.

Сопротивление отводу теплоты через дно паза:

, (2.34)

где δи,п – толщина пазовой изоляции, м;

λи,п – коэффициент теплопроводности пазовой изоляции, Вт/(м∙0С);

δв,п – толщина воздушных прослоек (равная половине допуска на укладку), м;

λв,экв – эквивалентный коэффициент теплопроводности воздушных прослоек в пазу, Вт/(м∙0С).

Эквивалентный коэффициент теплопроводности воздушных прослоек в пазу:

. (2.35)

Термическое сопротивление зубца:

, (2.36)

где hз – высота зубца, м;

λс – коэффициент теплопроводности стали пакета статора, Вт/(м∙0С);

bз – средняя ширина зубца, м;

kш – коэффициент шихтовки (коэффициент заполнения пакета сталью).

Тепловое сопротивление между пазовой частью обмотки и зубцами:

, (2.37)

где Rвн – внутреннее сопротивление обмотки, 0С / Вт;

Rип – сопротивление пазовой изоляции, 0С / Вт;

Rвп – сопротивление воздушных прослоек, 0С / Вт.

Внутреннее сопротивление обмотки:

. (2.38)

Тепловое сопротивление пазовой изоляции:

. (2.39)

Тепловое сопротивление воздушных прослоек:

. (2.40)

Тепловое сопротивление спинки сердечника:

, (2.41)

где Da – внешний диаметр сердечника статора, м;

Dд,п – диаметр окружности касательной к дну пазов, м.

4) Тепловое сопротивление между ротором и внутренним воздухом

, (2.42)