Смекни!
smekni.com

Моделирование нагрева асинхронного двигателя (стр. 5 из 12)

где Rрот.а – аксиальное сопротивление отводу теплоты от ротора, 0С / Вт;

Rрот.α – конвективное сопротивление отводу теплоты от ротора, 0С / Вт.

Аксиальное сопротивление отводу теплоты от ротора:

, (2.43)

где λа – коэффициент теплопроводности алюминия клетки, Вт/(м∙0С);

Fa – площадь поперечного сечения паза ротора, м2;

Z2 – число пазов ротора.

Конвективное сопротивление отводу теплоты от ротора:


, (2.44)

где αл.рот – коэффициент теплоотдачи лопаток ротора, Вт/(м20С);

bл – ширина лопатки ротора, м;

ал – высота лопатки ротора, м;

nл – количество лопаток ротора;

ηл – коэффициент качества лопатки ротора, рассматриваемой как ребро;

ак – высота короткозамыкающего кольца, м;

Dрот – диаметр ротора, м.

Коэффициент теплоотдачи лопаток ротора:

, (2.45)

где Nuл – число Нуссельта для лопаток ротора.

Число Нуссельта для лопаток ротора:

, (2.46)

где Reл – число Рейнольдса для лопаток ротора.

Число Рейнольдса для лопаток ротора:

. (2.47)

5) Тепловое сопротивление между ротором и статором

, (2.48)

где Rδ – тепловое сопротивление воздушного зазора, 0С / Вт;

Rз – термическое сопротивление зубца (2.36), 0С / Вт.

Тепловое сопротивление воздушного зазора:

, (2.49)

где аΣ – коэффициент теплоотдачи от ротора к внутреннему воздуху, Вт/(м20С).

Коэффициент теплоотдачи от ротора к внутреннему воздуху:

, (2.50)

где δ – зазор между ротором и статором, м;

Rрот=Dрот/2 – радиус ротора, м.

6) Сопротивление между сердечником статора и корпусом

, (2.51)

где RΔc – тепловое сопротивление стыка сердечник станина, 0С / Вт;

Rсп – тепловое сопротивление спинки сердечника (2.41), 0С / Вт.

Тепловое сопротивление стыка сердечник станина:

, (2.52)

где δусл – условный зазор в стыке сердечник станина, м.

Для двигателей серии 4А величина условного зазора приблизительно равна:

δусл≈(20∙Da+26) ∙10-6. (2.53)

7) Тепловое сопротивление между внутренним воздухом и корпусом

, (2.54)

где Rст,пр – тепловое сопротивление между внутренней поверхностью станины со стороны привода и внутренним воздухом, 0С / Вт;

Rст,в-тепловое сопротивление между внутренней поверхностью станины со стороны вентилятора и внутренним воздухом, 0С / Вт;

Rщ – тепловое сопротивление между внутренней поверхностью подшипникового щита и внутренним воздухом, 0С / Вт.

Тепловое сопротивление между внутренней поверхностью станины со стороны привода и внутренним воздухом:

, (2.55)

где Fст,пр – площадь внутренней поверхности свеса станины со стороны привода, м2;

αс – коэффициент теплоотдачи внутренней поверхности свесов станины, Вт/(м20С).

Площадь внутренней поверхности свеса со стороны привода:


, (2.56)

где lсв,пр – длина свеса станины со стороны привода, м.

Коэффициент теплоотдачи внутренней поверхности свесов станины:

, (2.57)

где Nuc – число Нуссельта для внутренней поверхности свесов станины.

Число Нуссельта для внутренней поверхности свесов станины зависит от высоты оси вращения и от наличия диффузора в полости лобовых частей.

Для высоты оси вращения h<160 мм:

, (2.58)

для высоты оси вращения h=160–250 мм:

без диффузора-

; (2.59)

с диффузором-

, (2.60)

где Rec – число Рейнольдса для внутренней поверхности свесов станины;

D – внутренний диаметр сердечника статора, м.

Число Рейнольдса для внутренней поверхности свесов станины:


. (2.61)

Тепловое сопротивление между внутренней поверхностью станины со стороны вентилятора и внутренним воздухом:

, (2.62)

где Fст,в- площадь внутренней поверхности свеса со стороны вентилятора, м2;

αс – коэффициент теплоотдачи внутренней поверхности свесов станины, Вт/(м20С).

Площадь внутренней поверхности свеса со стороны вентилятора:

, (2.63)

где lсв,в- длина свеса станины со стороны вентилятора, м.

Тепловое сопротивление между внутренней поверхностью подшипникового щита и внутренним воздухом:

, (2.64)

где Fщ – площадь внутренней поверхности подшипникового щита, м2;

αщ – коэффициент теплоотдачи внутренней поверхности подшипникового щита, Вт/(м20С).

Площадь внутренней поверхности подшипникового щита:


. (2.65)

Коэффициент теплоотдачи внутренней поверхности подшипникового щита:

, (2.66)

где Nuщ – число Нуссельта для внутренней поверхности подшипникового щита.

Число Нуссельта для внутренней поверхности подшипникового щита зависит от высоты оси вращения и от наличия диффузора в полости лобовых частей.

Для высоты оси вращения h<160 мм:

, (2.67)

для высоты оси вращения h=160–250 мм:

без диффузора-

; (2.68)

с диффузором-

, (2.69)

где Reщ – число Рейнольдса для внутренней поверхности свесов станины;

δд,щ – зазор между диффузором и щитом в месте крепления, м.

Число Рейнольдса для внутренней поверхности подшипниковых щитов:

. (2.70)

8) Тепловое сопротивление между внешним воздухом и корпусом

, (2.71)

где Rвс,пр – тепловое сопротивление между наружной поверхностью свисающей части станины со стороны привода и внешним воздухом, 0С / Вт;

Rвс – тепловое сопротивление между наружной поверхностью станины над пакетом и внешним воздухом, 0С / Вт;

Rвс,в- тепловое сопротивление между наружной поверхностью свисающей части станины со стороны вентилятора и внешним воздухом, 0С / Вт;

Rвщ,пр – тепловое сопротивление между наружной поверхностью подшипникового щита со стороны привода и внешним воздухом, 0С / Вт;

Rвщ,в- тепловое сопротивление между наружной поверхностью подшипникового щита со стороны вентилятора и внешним воздухом, 0С / Вт.

Тепловое сопротивление между наружной поверхностью станины над пакетом и внешним воздухом:

, (2.72)

где αс,п – коэффициент теплоотдачи наружной поверхности станины над пакетом, Вт/(м20С);

Dc – диаметр станины у основания ребер, м;

zp – количество ребер станины;

δр – толщина ребра станины, м;

hр – высота ребра станины, м;

ηр – коэффициент качества ребра станины.

Тепловое сопротивление между наружной поверхностью свисающей части станины со стороны привода и внешним воздухом:

, (2.73)

где αс,пр – коэффициент теплоотдачи наружной поверхности станины со стороны привода, Вт/(м20С).

Тепловое сопротивление между наружной поверхностью свисающей части станины со стороны вентилятора и внешним воздухом:

, (2.74)

где αс,в- коэффициент теплоотдачи наружной поверхности станины со стороны вентилятора, Вт/(м20С).

Коэффициент теплоотдачи наружной поверхности станины над пакетом:

, (2.75)

где αвх – коэффициент теплоотдачи на входе в межреберные каналы станины, Вт/(м20С);