Смекни!
smekni.com

Редуктор двухступенчатый соосный (стр. 1 из 6)

Исходные данные для проектирования

Выходная мощность Рвых = 1,1 кВт; число оборотов выходного вала nвых = 35; режим работы – тяжелый; срок службы привода – 3 года (рабочих дней – 300, одна смена длится 8 часов, число смен работы – 3); передаточное число редуктора Uр = 14; первая ступень редуктора – прямозубая; разработать рабочий чертеж большего шкива клиноременной передачи.

1. Выбор электродвигателя (ЭД) и расчет основных параметров для всех ступеней передачи

1) Мощность на валу электродвигателя передается всем приводом, состоящим из клиноременной передачи и редуктора. Ее значение определяем по потребной мощности:

где Р – требуемая мощность электродвигателя, кВт

Рвых – требуемая мощность на выходном валу привода, кВт

hобщ – общий КПД привода,

где h12, h34, h56 – КПД первой, второй и третьей ступени привода соответственно.

В соответствии с рекомендациями с. 3 [1] принимаем:

h12 = 0,96

h34 = h56 = 0,98

Тогда:

кВт

По табл. 1.1 (с. 4, [1]) принимаем асинхронный короткозамкнутый обдуваемый двигатель 4А80В4У3 с синхронной частотой вращения 1500 об/мин, мощностью Рдв = 1,5 кВт и асинхронной частотой 1415 об/мин.

2) Передаточное число привода определяется из выражения:


где nдв – асинхронная частота вращения вала ЭД, об/мин

nвых – заданная частота вращения выходного вала привода, об/мин.

Тогда:

Передаточное число клиноременной передачи:

3) Общее передаточное число редуктора определяется из выражения:

где UБ – передаточное число первой (быстроходной) ступени редуктора,

UТ – передаточное число второй (тихоходной) ступени редуктора.

По рекомендациям табл. 1.4 (с. 8, [1]) принимаем:

Принимаем UТ = 3,5.

Тогда:


Тогда:

– разбивка произведена точно.

4) Определяем расчетные параметры для ступеней привода.

Расчетная мощность на валах привода определяется по формулам:

РI = Рдв; РII = РI×h12; РIII = РII×h34; РIV = РIII×h56

где Рдв – мощность на валу электродвигателя, кВт;

h12, h34, h56, – КПД соответствующих ступеней привода.

Частота вращения валов привода определяется из соотношений:

nI = nдв;

;
;

где nдв – асинхронная частота вращения вала привода, об/мин;

n I – IV – частоты вращения соответствующих валов привода, об/мин.

Крутящие моменты на валах привода определяются по формуле:

, Н×м,

где Р – мощность, передаваемая валом, кВт;

n – частота вращения вала, об/мин.

Все расчеты по вышеприведенным формулам сведем в таблицу 1.1.

Таблица 1.1

Номер вала КПД ступени привода Мощность на валу Р, кВт Передаточное число U Частота вращения вала, об/мин Крутящий момент на валу, Н×м
I 0,96 - 1,5 2,89 - 1415 10,1
II 0,98 1,44 4 490 28,1
III 0,98 1,41 3,5 122,5 110
IV - 1,38 - 35 376,5

2. Расчет зубчатых передач редукторов

2.1 Расчет тихоходной ступени редуктора

Расчет зубчатых передач нашего редуктора начинаем с расчета тихоходной ступени, поскольку в соосных редукторах она нагружена больше, нежели быстроходная ступень.

Суммарное время работы привода в часах определяется по формуле:

где Lгод – срок службы привода, лет;

С – число смен работы привода;

300 – количество рабочих дней в году;

8 – число рабочих часов за одну смену.

Тогда:

ч.

Выбор термической обработки заготовок

По табл. 2.2 (с. 10, [1]) выбираем материал для изготовления зубчатых колес – сталь 12ХН3А. Принимаем твердость рабочих поверхностей зубьев > НВ 350. В этом случае зубья во время работы не прирабатываются и обеспечивать разность твердостей зубьев шестерни и колеса не требуется. Выбираем термообработку – улучшение + цементация + закалка. Твердость поверхности HRC 56…63, сердцевины НВ 300…400.

Определение механических свойств материалов зубчатых колес и допускаемых напряжений

1) Средние значения твердостей зубьев:


2) Предельные характеристики материалов:

sВ = 1000 МПа, sТ = 800 МПа (см. табл. 2.2, [1]).

3) Допускаемые напряжения для расчета передачи на контактную выносливость:

(см. табл. 2.5, [1]).

В этих формулах:

sОН – длительный предел контактной выносливости

МПа (см. табл. 2.6, [1]);

SН – коэффициент безопасности, SН = 1,2 (см. табл. 2.6, [1]).

Тогда:

МПа.

NНО – число циклов перемены напряжений, соответствующее длительному пределу выносливости; NНО = 200×106 (рис. 2.1, [1]);

NНЕ – эквивалентное число циклов перемены напряжений для расчета на контактную выносливость:

КНЕ – коэффициент приведение; при тяжелом режиме работы КНЕ = 0,5 (табл. 2.4, [1]);

NS – суммарное число циклов перемены напряжений

где ni – частота вращения i-го зубчатого колеса.

Для шестерни: NS1 = 60×21600×122,5 = 158,8×106 циклов

Для колеса: NS2 = 60×21600×35 = 45,4×106 циклов

Таким образом,

циклов

циклов

Так как NНЕ1 < NНО и NНЕ2 < NНО, то:

МПа

МПа

В качестве

принимаем меньшее из
и
, т.е.
= 1330 МПа.

Предельное допускаемое напряжение определим по формуле:

МПа

Условие

<
выполняется.

4) Допускаемое напряжение для расчета передачи на изгибную выносливость:


(см. табл. 2.5, [1]).

В этих формулах:

sОF – длительный предел изгибной выносливости

МПа (см. табл. 2.6, [1]);

SF – коэффициент безопасности, SF = 1,55 (см. табл. 2.6, [1]).

Тогда:

МПа.

N – эквивалентное число циклов перемены напряжений для расчета на изгибную выносливость:

К – коэффициент приведение; при тяжелом режиме работы К = 0,2 (табл. 2.4, [1]);

Таким образом,

Для шестерни:

циклов

Для колеса:

циклов

Так как NFЕ1 > 4×106 циклов и NFЕ2 > 4×106 циклов, то принимаем NFЕ1 = NFЕ2 = 4×106 циклов.