Смекни!
smekni.com

Водяной насос (стр. 5 из 5)

Толкатель в кулачковом механизме заканчивается, как правило, вращающимся роликом, который касается кулачка непосредственно. Наличие ролика никак не отражается на законе движения толкателя. Назначение ролика – перевод трения скольжения толкателя по кулачку, в трение качения ролика по поверхности кулачка. В итоге получаем повышение долговечности кулачкового механизма по износу.

Кулачку в кулачковом механизме присущи два профиля – действительный (рабочий) и теоретический.

Действительным профилем является профиль кулачка, с которым непосредственно соприкасается ролик толкателя.

Теоретический профиль – это кривая, которую описывает центр ролика толкателя при движении относительно кулачка.

Действительный и теоретический профили кулачка являются эквидистантными (равноудаленными друг от друга) кривыми.

В движении кулачкового механизма различают в общем случае четыре этапа (фазы):

1 этап – удаление толкателя, фазовый угол

, 2 этап – дальнее стояние толкателя, фазовый угол
. Профиль кулачка на этапе дальнего стояния есть окружность радиуса
с центром на оси О вращения кулачка.

3 этап – приближение толкателя, фазовый угол

. 4 этап – ближнее стояние толкателя, фазовый угол
.

Профиль кулачка на этапе ближнего стояния толкателя, является дугой окружности радиуса

, с центром на оси О вращения кулачка. При этом
.

Соответствие между фазовыми углами в движении кулачка и перемещением толкателя устанавливается, так называемой, циклограммой работы кулачкового механизма.

4.2 Исходные данные

ход толкателя, мм;

фазовые углы кулачка, соответствующие этапам удаления и приближения толкателя, градусы;

фазовые углы кулачка, соответствующие дальнему и ближнему стоянию толкателя, градусы;

Законы движения:

– при удалении: трапецеидальный

– при приближении: параболический симметричный

4.3 Расчет передаточных функций выходного звена

Рассчитаем перемещения Si и аналог ускорения Si¢ по соответствующим заданному закону формулам.

Фаза удаления:


, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при

h = 20 (мм); φy= 120º = 2.093 рад; ji=0, 0.348, 0.697, 1.046, 1.395, 1.744, 2.093 рад

Фаза возвращения:

, при

, при

, при

, при

, при

, при

φb = 50º = 0,872 рад, ji=0, 0.145, 0.29, 0.436, 0.581, 0.726, 0.872 рад

Табл. 4.1

i
ji Si, м S`, м S``, м yi, мм y`, мм y``, мм
Фаза удаления
0 0 0 0 0 0 0 0 0
1 20 20 0,00065 0,00563 0,03238 1,3 11,26 64,76
2 40 40 0,00395 0,01377 0,02435 7,9 27,54 48,7
3 60 60 0,01001 0,01908 0,00006 20,02 38,16 0,12
4 80 80 0,01601 0,01381 -0,0243 32,02 27,62 -48,6
5 100 100 0,01935 0,00531 -0,0243 38,7 10,62 -48,6
6 120 120 0,02 0 0 40 0 0
Фаза приближения
7 0 220 0 0 0,0526 0 0 105,2
8 8.33 228.33 0,0011 0,0133 0,0526 2,2 7,3 105,2
9 16.66 236.66 0,00424 0,0266 0,0526 8,48 14,6 105,2
10 24.99 244.99 0,01 0,04 0,0526 20 21,9 105,2
11 33.32 253.32 0,01554 0,01755 -0,0526 31,08 19 -105,2
12 41.65 261.65 0,01887 0,0088 -0,0526 37,74 9,5 -105,2
13 50 270 0,02 0 -0,0526 40 0 -105,2

μl= 0,0005 м/мм.

4.4 Определение основных размеров

Определим минимальный радиус кулачка из условия выпуклости профиля. Для этого на основании графиков S(φ) и S» (φ), строим график S(S’’). Проведем касательную под углом 45 к оси S. За центр вращения кулачка выбираем точку Оi лежащая ниже точки О на 10 мм.

Ro= 0,0752 м

Проводим окружность радиусом Ro. Так как e = 0, линия движения толкателя yy проходит через центр вращения кулачка Оi. Вдоль этой линии от точки АО откладывается перемещение толкателя согласно графику.

Заключение

В результате выполнения курсовой работы закрепил и обобщил знания и навыки, полученные при изучении дисциплины, научился применять на практике теорию курса (кинематику, динамику, синтез эвольвентного зацепления и синтез кулачкового механизма).

Выполняя курсовой проект по теории машин и механизмов, овладел навыками использования общих методов проектирования и исследования механизмов. Также овладел методами определения кинематических параметров механизмов, оценки сил, что действуют на отдельные звенья механизма, научился оценивать сконструированный механизм с точки зрения его назначения – обеспечивать необходимые параметры движения.

Список использованных источников

1. Попов С.А. Курсовое проектирование по теории механизмов и механике машин. – М.: Высшая школа, 1986.

2. Попов С.А., Тимофеев Г.А. Курсовое проектирование по теории механизмов и механике машин. – М.: Высшая школа, 1999.

3. Курсовое проектирование по теории механизмов и машин. / Под ред. Девойно Г.Н. – Мин.: Высшая школа, 1986.

4. Теория механизмов и машин. / Под ред. Фролова К.В.