Смекни!
smekni.com

Зміст технології поверхневого зміцнення сталевих виробів (стр. 5 из 5)

Виділяють два напрями використання плазмового нагріву. Перше зв'язане з використанням нагріву, здійснюваного плазмою тліючого розряду у вакуумній камері при тиску залишкового повітря 1,33-13,3 Па. Цей процес набув поширення для хіміко-термічної обробки інструменту і інших малогабаритних деталей. До недоліків способу слід віднести наявність вакуумної камери і обмеження оброблюваних деталей її розмірами. Крім того, щільність потужності, що передається оброблюваній деталі, невелика.

До цього ж напряму слід віднести і технологію електролітно-плазмового зміцнення. Електролітний нагрівач, включений в електричний ланцюг як анод, підводять до виробу, який є катодом. Замикання електричного ланцюга між анодом-електронагрівачем і поверхнею виробу відбувається через електроліт (водний розчин солі). Перетворення електричної енергії в теплову йде переважно в прикордонному до виробу шарі. В результаті нагріву цей шар переходить в парогазовий стан, в нім під впливом прикладеної напруги збуджуються мікродуги. Щільність потужності досягає 2,4-103 Вт/см2. Оскільки як електроліт використовують водний розчин солі, то цим же електролітом можна виробляти охолоджування і гартування нагрітих ділянок поверхні.

Для підвищення продуктивності обробку виконують декількома електролітними нагрівачами. Технологія дозволяє в широких межах змінювати швидкість нагріву і охолоджування (50-400 °С) і товщину загартованого шару (1-10 мм). Твердість сталей після гарту складає: 35ХГСА - 50-55 HRCэ; 40X - 55-60 HRCэ; 65Г - 60-68 HRCэ. Після зміцнення перехідників бурових штанг даним способом їх працездатність підвищили в 2-3 рази [7 Лащенко, с.5].

Другий напрям вживання плазмового нагріву базується на використанні стислої дуги прямої або непрямої дії, що генерується спеціальним плазмотроном. Під впливом стінок каналу сопла і струменя плазмо утворюючого газу стовп дуги стискується, його поперечний перетин зменшується, а температура в центральній частині стовпа дуги підвищується до 10000-50000 К. В результаті внутрішній шар, дотичний із стовпом дуги, перетворюється на плазму, а зовнішній шар, що омиває стінки каналу сопла, залишається порівняно холодним, утворюючи електричну і теплову ізоляцію між потоком плазми і каналом сопла. Цей охолоджений шар газу перешкоджає відхиленню стовпа дуги від заданого напряму і замиканню його на стінку каналу сопла. Напруга стислої дуги складає 60-200 В, що в 3-10 разів більше, ніж у вільній дузі. Щільність струму стислої дуги досягає 100 А/мм2, тобто на порядок вище, ніж у вільної, а питома потужність досягає 2·106 Вт/см2 [7 Лащенко, с.6].

Плазмове зміцнення без оплавлення поверхні найбільш поширене, оскільки дозволяє в широких межах регулювати твердість, розміри і експлуатаційні характеристики оброблюваної зони при збереженні високої якості поверхні.

Зміцнення з оплавленням поверхні зазвичай використовують для досягнення особливих експлуатаційних властивостей.

При плазмовому термозміцненні окремі шари оброблюваної ділянки прогріваються по глибині до різних температур, унаслідок чого зона термічної дії (ЗТД) має шарувату будову. Залежно від мікроструктури і мікротвердості в сталях по глибині ЗТД розрізняють три шари (рис.3.1).

Рис.3.1 Схема будови ЗТД при плазмовому зміцненні

Зона оплавлення 1 (перший шар) має місце при гартуванні з оплавленням. Як правило, зона оплавлення має стовпчасту будову з кристалами, витягнутими у напрямі тепловідводу. Основна структурна складова - мартенсіт, карбіди зазвичай розчиняються. При оптимальних режимах гартування з розплавленням зневуглецювання не відбувається, немає пір і шлакових включень. При плазмовому гартуванню без оплавлення перший шар відсутній.

Другий шар - зона гартування 2 з твердої фази. Його нижній кордон визначається температурою нагріву до Ас1. В цьому випадку разом з повним гартом відбувається і неповна. По глибині даний шар характеризується структурною неоднорідністю. Ближче до поверхні є мартенсіт і залишковий аустеніт, отримані при охолоджуванні з гомогенного аустеніту. Ближче до вихідного металу разом з мартенсітом є елементи вихідної структури: феріт в доевтектоїдній сталі і цементит в заевтектоїдній.

У перехідній зоні 3 (третій шар) метал нагрівається нижче за точку Ас1. Якщо сталь має вихідний стан після гартування або відпуску, то в результаті плазмової обробки в цьому шарі утворюються структури відпуску - троостіт або сорбіт, що характеризуються зниженою твердістю. Зона термічного впливу плазмового струменя (дуги) має форму сегменту, по своїй будові вона аналогічна ЗТД електронного і лазерного променів.

При плазмовому нагріві не завжди удається уникнути накопичення теплоти в оброблюваному виробі. З метою усунення накопичення теплоти у виробі використовують плазмове зміцнення в рідких середовищах. Оброблюваний виріб занурюють в рідину так, щоб над його поверхнею був рідкий прошарок певної товщини (рис.3.2).

Рис.3.2 Схема процесу плазмового зміцнення в рідких середовищах: 1 - плазмотрон; 2 - введення води; 3 - виведення води

Остання залежить від параметрів плазмового струменя і властивостей рідини. Завдяки газодинамічному натиску плазмового струменя в рідкому прошарку створюється воронка, через яку відбувається термічна дія плазми на оброблювану поверхню. Обробку здійснюють в напівзамкненому об'ємі, обмеженому з усіх боків рідиною. При русі плазмового струменя відносно деталі нагріта до температури структурних перетворень поверхня відразу закривається рідиною, яка охолоджує її. Якщо використовувати не воду, а активні рідкі середовища типа розчинів різних солей, на поверхню можна додатково хімічно впливати.

Перевагою даного способу є практично повна відсутність деформацій оброблюваного виробу. Підвищення швидкості нагріву скорочує температурновременный інтервал зростання зерна і гомогенізації аустеніту [7 Лащенко, с.5-10].

Висновки

Багато деталей машин працюють в умовах тертя і піддаються дії ударних і вигинаючих навантажень. Такі деталі мають бути твердими, зносостійкими, міцними і одночасно в'язкими, пластичними. Це досягається поверхневим зміцненням.

Призначення поверхневого зміцнення - підвищення міцності, твердості, зносостійкості поверхневих шарів деталей при збереженні в'язкою, пластичної серцевини для сприйняття ударних навантажень.

В деталей машин, що працюють при динамічних і циклічних навантаженнях, тріщини втоми виникають в поверхневих шарах під впливом розтягуючої напруги. Якщо на поверхні створити залишкову напругу стискування, то розтягуюча напруга від навантажень в експлуатації буде менша і збільшиться межа витривалості (втомі). Створення в поверхневих шарах деталей напруги стискування - друге призначення поверхневого зміцнення.

Будь-який економічно обґрунтований метод зміцнення вимагає перевірки типової технології в конкретних умовах для кожного виду зміцнюваного виробу. Вживаність методу визначають по основних чинниках, що характеризують зовнішні і внутрішні умови експлуатації зміцнених виробів і техніко-економічні можливості використання методу в умовах, що склалися, і в перспективному періоді. У кожному конкретному випадку для кожного виду зміцнюваного виробу на вибір і ухвалення обґрунтованого рішення про доцільність використання методу зміцнення впливає своя, специфічна, група чинників. Якнайповніша оцінка прийнятності методу для даних умов можлива в тому випадку, якщо розглядається якнайповніше число чинників і зв'язку між ними. З цією метою раціонально вивчити і класифікувати основні чинники, що діють в даних конкретних умовах.

Впровадження технології зміцнюючої обробки вимагає проведення великого комплексу підготовчих робіт. У їх числі - визначення номенклатури виробів, деталей і поверхонь, зміцнення яких доцільно і необхідно; вибір найбільш ефективного, економічно оптимального методу зміцнення, його експериментальна перевірка в лабораторних умовах; підготовка матеріальної бази - придбання і виготовлення стандартизованого і нестандартизованого устаткування, різних приладів і інструментів; підготовка виробничих приміщень і комунікацій; накопичення основних і допоміжних матеріалів.

Список використаної літератури

1. Гольчевская Н.Ю., Гольчевский В.Ф. Материаловедение: Учебное пособие. - Иркутск: ИрГТУ, 2008. - 428 с.

2. Гуляев А.П. Металловедение: Учебник. - М.: Металлургия, 1986. - 544с.

3. Дьогтєв Г.Ф. Матеріалознавство: Посібник. - К.: "Вища школа", 1975, - 256 с.

4. Евдокимов В.Д., Клименко Л.П., Евдокимова А.Н. Технология упрочнения машиностроительных материалов: Учебное пособие-справочник / Под редакцией В.Д. Евдокимова. - Одесса, Николаев: Изд-во НГГУ им. Петра Могилы, 2005. - 352 с.

5. Лахтин Ю.М. Основы металловедения: Учебник. - М.: Металлургия, 1988. - 320 с.

6. Лахтин Ю.М., Леонтьева В.П. Материаловедение: Учебник. - М.: Машиностроение, 1980. - 493 с.

7. Лащенко Г.И. Плазменное упрочнение и напыление. - К.: "Екотехнологія", 2003. - 64 с.

8. Материаловедение: Учебник / Под общ. ред. Б.Н. Арзамасова. - М.: Машиностроение, 1986. - 384 с.

9. Солнцев Ю.П., Пряхин Е.И. Материаловедение: Учебник для вузов. - СПб.: Химиздат, 2007. - 784 с.

10. Упрочнение поверхностей деталей комбинированными способами / А.Г. Бойцов, В.Н. Машков, В.А. Смоленцев, Л.А. Хворостухин. - М.: Машиностроение, 1991. - 144 с.

11. Шевченко С.М., Сахарова В.Н., Пачурин Г.В., Иняев В.А. Повышение жаропрочности сталей // Фундаментальные исследования, 2006. - № 4. - с.87-88