Смекни!
smekni.com

Дослідження властивостей технологічного агрегата як многомірної системи (стр. 3 из 5)

Ж) розчеплюваність:


det=0.016

Система є розчеплюваною.

3. Дослідження процесів в системі і аналіз кількісних властивостей системи

3.1 Побудова графіків розгінних кривих непереривної системи

Побудова графіку розв'язання у (t) для системыи {А, В, С}, якщо

и

Таблиця 4.

Збурення Реакція виходу системи y (t)
u1=0,01u2=0 y1y2 00 0,004350,00445 0,006810,00609 0,008200,0067 0,008980,00692 0,009420,00700 0,009670,00703
u1=0u2=0,01 y1y2 00 0,004350,037 0,006810,051 0,008200,056 0,008980,058 0,009420,059 0,009670,059
час t, с 0 14,3 28,6 42,9 57,2 71,5 85,8

Рисунок 7. Розгінна крива витрати рідини для неперервної системи при збуренні 0 і 0,01.


Рисунок 8. Розгінна крива концентрації для неперервної системи при збуренні 0.

Рисунок 9. Розгінна крива концентрації для неперервної системи при збуренні 0,01.

3.2 Побудова графіків кривих разгону дискретної системи

Система в дискретному часі має вид:

dt=14,89 c.


Таким чином

Задавшись

,
, тоді

Результати подальших ітерацій представлено в таблиці:

Таблиця 5.

Збурення Реакція виходу системи y (t)
u1=0u2=0,01 y1y2 00 0,0032980,00452 0,0052990,00469 0,007730,006183 0,0065120,006795 0,007250,00702 0,007690,00713
час t, с 0 14,894 29,787 44,681 59,574 74,468 89,362

Рисунок 10. Характеристика витрати рідини в дискретному часі.

Рисунок 11. Характеристика концентрації в дискретному часі.

3.3 Побудова графіків кривих разгону нелінійної системи

Розглянемо поповнення бака від 0 до номінального значення витрати з урахуванням приросту поданого лінеаризованій моделі. Таким чином, розглянемо стрибок u1=0,03; u2=0.

Позначивши

,рівняння бака запишемо у вигляді системи:

Перше рівняння є нелінійним зі змінними що розділяються


З урахуванням того, що

запишемо:

, чи підставляючи

Виразимо

Підставляємо

та

Таблиця 6.

y1 0.141 0.142 0.143 0.144 0.145 0.146 0.147 0.148 0.149 0.150 0.151
t, с 0 1.5 3.188 5.116 7.357 10.026 13.315 17.585 23.643 34.072 68.958

По отриманим даним побудуємо графік:

Рисунок 12. Лінійна та нелінійна характеристика витрати води.

Так як немає аналітичної залежності

, використаємо її кус очно-лінійну апроксимацію, представляючи на проміжкові від
до
функцію
как
. Тоді,

;

Отримані дані занесемо в таблицю:

Рисунок 13. Лінійна та нелінійна характеристика концентрації.

3.4 Сталий стан системи

Вичислимо постійне значення системи при умовах


І порівняємо його з результатом розрахунку.

4. Ідентифікація багатомірної математичної моделі по даним експеремента

4.1 Активна ідентифікація

Для дискретної форми системи (F, G, C) провести реалізацію системи.

Запишемо систему у вигляді:

Подавши імпульс по першому входу, розрахуємо:


Із власних векторів від (

) і (
) побудуємо:

При

Знайдемо передаточну функцію системи:

.

4.2 Пасивна ідентифікація

Для дискретної форми системи (F, G, C) провести пасивну ідентифікацію системи: