Министерство образования и науки Украины
Национальный Технический Университет
«Харьковский Политехнический Институт»
Кафедра Общей химической технологии, процессов и аппаратов
Курсовой проект
Тема проекта:
Расчет трехкорпусной выпарной установки непрерывного действия
Проектировал студент
Шорин В. В..
гр. Н-48
Руководитель проекта
Новикова Г. С.
Харьков 2010 г.
Введение
Технологическая схема выпарной установки
В химической промышленности для концентрирования растворов нелетучих и мало летучих веществ широко применяется процесс выпаривания. Наиболее целесообразно для этого использовать многокорпусные выпарные установки непрерывного действия (МВУ). МВУ состоят из нескольких корпусов, в которых вторичный пар предыдущего корпуса используется в качестве греющего пара для последующего корпуса. В этих установках первичным паром обогревается только первый корпус. В многокорпусных выпарных установках достигается значительная экономия греющего пара по сравнению с однокорпусными установками той же производительности.
Принципиальная технологическая схема трехкорпусной вакуум-выпарной установки непрерывного действия представлена на рис.1.1.
Исходный раствор подается из емкости 1 центробежным насосом 2 через теплообменник 3 в первый корпус выпарной установки 4. В теплообменнике 3 исходный раствор нагревается до температуры близкой к температуре кипения раствора в первом корпусе выпарной установки.
Первый корпус установки обогревается свежим (первичным) паром. Вторичный пар, образующийся при кипении раствора в первом корпусе, направляется в качестве греющего пара во второй корпус 5; сюда же поступает частично сконцентрированный раствор из первого корпуса. Аналогично упаренный раствор из второго корпуса подается в третий корпус 6 , обогреваемый вторичным паром второго корпуса. Упаренный до конечной концентрации в третьем корпусе готовый продукт поступает из него в емкость 10. По мере прохождения из корпуса в корпус давление и температура пара понижаются, и из последнего (третьего) корпуса пар с низким давлением отводится в барометрический конденсатор смешения 7, в котором при конденсации пара создается вакуум. Раствор и вторичный пар перемещаются из корпуса в корпус самотеком благодаря общему перепаду давления, возникающего в результате избыточного давления в первом корпусе и вакуума в последнем. Воздух и неконденсирующиеся газы, поступающие в установку с охлаждающей водой (в конденсаторе) и через неплотности трубопроводов, отсасываются через ловушку 8 вакуум-насосом.
Смесь охлаждающей воды и конденсата сливается самотеком через барометрическую трубу в бак-гидрозатвор 9.Конденсат греющих паров из выпарных аппаратов и теплообменника выводится с помощью конденсатоотводчиков.
Выбор выпарных аппаратов
Конструкция выпарного аппарата должна удовлетворять ряду общих требований, к числу которых относятся: высокая производительность и интенсивность теплопередачи при возможно меньших объеме аппарата и расходе металла на его изготовление, простота устройства, надежность в эксплуатации, легкость чистки поверхности теплообмена, осмотра и ремонта.
Вместе с тем выбор конструкции и материала выпарного аппарата определяется в каждом конкретном случае физико-химическими свойствами раствора.
Для выпаривания растворов небольшой вязкости (до 8 мПа∙с) без образования кристаллов, чаще всего используют выпарные аппараты с естественной циркуляцией. Высоковязкие и кристаллизующиеся растворы выпаривают в аппаратах с принудительной циркуляцией.
Растворы чувствительные к повышенным температурам рекомендуется выпаривать в роторно-пленочных выпарных аппаратах, а растворы склонные к пенообразованию – в прямоточных аппаратах с восходящей пленкой.
Типы и основные размеры выпарных аппаратов представлены в ГОСТ 11987–81, и каталогах УКРНИИХИММАШа [11,12].
Задание на расчет выпарной установки
Цель расчета выпарной установки – расчет материальных потоков, затрат тепла и энергии, размеров основного аппарата, расчет и выбор вспомогательного оборудования, входящего в технологическую схему установки.
Задание на курсовое проектирование
Рассчитать и спроектировать трехкорпусную выпарную установку непрерывного действия для концентрирования водного раствора
по следующим данным:1. Производительность установки по исходному раствору –8000 кг/ч;
2. Концентрация раствора: начальная – 5% масс.; конечная – 15 % масс.;
3. Давление греющего пара –Р=0,4 МПа;
4. Давление в барометрическом конденсаторе –,Р=0,0147 МПа;
5. Раствор подается в первый корпус подогретым до температуры кипения;
6. Схема выпаривания - прямоточная; циркуляция естественная
1. Определениеповерхноститеплопередачи выпарных аппаратов
Технологический расчёт выпарных аппаратов заключается в определении поверхности теплопередачи. Поверхность теплопередачи выпарного аппарата определяется по основному уравнению теплопередачи
, (1.1)где
– поверхность теплопередачи, м2; – тепловая нагрузка, Вт; – коэффициент теплопередачи, Вт/(м2∙К); – полезная разность температур, К.Для определения тепловых нагрузок, коэффициентов теплопередачи и полезных разностей температур необходимо знать распределение упариваемой воды, концентрации растворов по корпусам и их температуры кипения. Первоначально определим эти величины по материальному балансу, в дальнейшем уточним их по тепловому балансу.
1.1 Расчёт концентраций выпариваемого раствора
Производительность установки по выпариваемой воде определяем по формуле:
, (1.2)где
– производительность по выпаренной воде, кг/с; – производительность по исходному раствору, кг/с; – соответственно начальная и конечная концентрация раствора, масс. доли,кг/с.
На основании практических данных принимаем, что выпариваемая вода распределяется между корпусами в соотношении
Тогда:
Проверка:
W1+W2+W3= W=0,45+0,49+0,54=1,76 кг/с.
Рассчитываем концентрации растворов в корпусах:
Концентрация раствора в третьем корпусе
соответствует заданной концентрации упаренного раствора .1.2 Определение температур кипения раствора
Температура кипения раствора в корпусе
определяетсякак сумма температур греющего пара последующего корпуса и температурныхпотерь , (1.3)где
– соответственно температурная, гидростатическая и гидравлическая депрессии, К.Для определения температур греющего пара примем, что перепад давлений в установке ∆P распределяется между корпусами поровну:
, (1.4)где PГ1 – давление греющего пара в первом корпусе, МПа;
Pбк – давление в барометрическом конденсаторе, МПа.
Тогда давление греющих паров, МПа, в корпусах составляет:
PГ1=0,4МПа
PГ2 = PГ1 – ∆P= 0,4 – 0,1284 = 0,2716 МПа
PГ3 = PГ2 – ∆P= 0,2716 – 0,1284 = 0,1432 МПа
Pбк = PГ3 – ∆P= 0,1432 – 0,1284 = 0,0148 МПа
По давлению греющего пара находим его температуру и теплоту парообразования
(табл. 2.1) по корпусам.Таблица 1.1 – Температуры и теплоты парообразования
Давление, МПа | Температура, ºС | Теплота парообразования, кДж/кг |
PГ1=0,4 | tГ1=143,6 | rГ1=2139 |
PГ2=0,2716 | tГ2=129,78 | rГ2=2180 |
PГ3=0,1432 | tГ3=110,4 | rГ3=2234 |
Pбк=0,0148 | tбк=53,71 | rбк=2372,3 |
1.2.1 Определение температурных потерь