Смекни!
smekni.com

Расчет трехкорпусной выпарной установки непрерывного действия (стр. 1 из 6)

Министерство образования и науки Украины

Национальный Технический Университет

«Харьковский Политехнический Институт»

Кафедра Общей химической технологии, процессов и аппаратов

Курсовой проект

Тема проекта:

Расчет трехкорпусной выпарной установки непрерывного действия

Проектировал студент

Шорин В. В..

гр. Н-48

Руководитель проекта

Новикова Г. С.

Харьков 2010 г.

Введение

Технологическая схема выпарной установки

В химической промышленности для концентрирования растворов нелетучих и мало летучих веществ широко применяется процесс выпаривания. Наиболее целесообразно для этого использовать многокорпусные выпарные установки непрерывного действия (МВУ). МВУ состоят из нескольких корпусов, в которых вторичный пар предыдущего корпуса используется в качестве греющего пара для последующего корпуса. В этих установках первичным паром обогревается только первый корпус. В многокорпусных выпарных установках достигается значительная экономия греющего пара по сравнению с однокорпусными установками той же производительности.

Принципиальная технологическая схема трехкорпусной вакуум-выпарной установки непрерывного действия представлена на рис.1.1.

Исходный раствор подается из емкости 1 центробежным насосом 2 через теплообменник 3 в первый корпус выпарной установки 4. В теплообменнике 3 исходный раствор нагревается до температуры близкой к температуре кипения раствора в первом корпусе выпарной установки.

Первый корпус установки обогревается свежим (первичным) паром. Вторичный пар, образующийся при кипении раствора в первом корпусе, направляется в качестве греющего пара во второй корпус 5; сюда же поступает частично сконцентрированный раствор из первого корпуса. Аналогично упаренный раствор из второго корпуса подается в третий корпус 6 , обогреваемый вторичным паром второго корпуса. Упаренный до конечной концентрации в третьем корпусе готовый продукт поступает из него в емкость 10. По мере прохождения из корпуса в корпус давление и температура пара понижаются, и из последнего (третьего) корпуса пар с низким давлением отводится в барометрический конденсатор смешения 7, в котором при конденсации пара создается вакуум. Раствор и вторичный пар перемещаются из корпуса в корпус самотеком благодаря общему перепаду давления, возникающего в результате избыточного давления в первом корпусе и вакуума в последнем. Воздух и неконденсирующиеся газы, поступающие в установку с охлаждающей водой (в конденсаторе) и через неплотности трубопроводов, отсасываются через ловушку 8 вакуум-насосом.

Смесь охлаждающей воды и конденсата сливается самотеком через барометрическую трубу в бак-гидрозатвор 9.Конденсат греющих паров из выпарных аппаратов и теплообменника выводится с помощью конденсатоотводчиков.

Выбор выпарных аппаратов

Конструкция выпарного аппарата должна удовлетворять ряду общих требований, к числу которых относятся: высокая производительность и интенсивность теплопередачи при возможно меньших объеме аппарата и расходе металла на его изготовление, простота устройства, надежность в эксплуатации, легкость чистки поверхности теплообмена, осмотра и ремонта.

Вместе с тем выбор конструкции и материала выпарного аппарата определяется в каждом конкретном случае физико-химическими свойствами раствора.

Для выпаривания растворов небольшой вязкости (до 8 мПа∙с) без образования кристаллов, чаще всего используют выпарные аппараты с естественной циркуляцией. Высоковязкие и кристаллизующиеся растворы выпаривают в аппаратах с принудительной циркуляцией.

Растворы чувствительные к повышенным температурам рекомендуется выпаривать в роторно-пленочных выпарных аппаратах, а растворы склонные к пенообразованию – в прямоточных аппаратах с восходящей пленкой.

Типы и основные размеры выпарных аппаратов представлены в ГОСТ 11987–81, и каталогах УКРНИИХИММАШа [11,12].

Задание на расчет выпарной установки

Цель расчета выпарной установки – расчет материальных потоков, затрат тепла и энергии, размеров основного аппарата, расчет и выбор вспомогательного оборудования, входящего в технологическую схему установки.

Задание на курсовое проектирование

Рассчитать и спроектировать трехкорпусную выпарную установку непрерывного действия для концентрирования водного раствора

по следующим данным:

1. Производительность установки по исходному раствору –8000 кг/ч;

2. Концентрация раствора: начальная – 5% масс.; конечная – 15 % масс.;

3. Давление греющего пара –Р=0,4 МПа;

4. Давление в барометрическом конденсаторе –,Р=0,0147 МПа;

5. Раствор подается в первый корпус подогретым до температуры кипения;

6. Схема выпаривания - прямоточная; циркуляция естественная


1. Определениеповерхноститеплопередачи выпарных аппаратов

Технологический расчёт выпарных аппаратов заключается в определении поверхности теплопередачи. Поверхность теплопередачи выпарного аппарата определяется по основному уравнению теплопередачи

, (1.1)

где

– поверхность теплопередачи, м2;

– тепловая нагрузка, Вт;

– коэффициент теплопередачи, Вт/(м2∙К);

– полезная разность температур, К.

Для определения тепловых нагрузок, коэффициентов теплопередачи и полезных разностей температур необходимо знать распределение упариваемой воды, концентрации растворов по корпусам и их температуры кипения. Первоначально определим эти величины по материальному балансу, в дальнейшем уточним их по тепловому балансу.

1.1 Расчёт концентраций выпариваемого раствора

Производительность установки по выпариваемой воде определяем по формуле:

, (1.2)

где

– производительность по выпаренной воде, кг/с;

– производительность по исходному раствору, кг/с;

– соответственно начальная и конечная концентрация раствора, масс. доли,

кг/с.

На основании практических данных принимаем, что выпариваемая вода распределяется между корпусами в соотношении

Тогда:

Проверка:

W1+W2+W3= W=0,45+0,49+0,54=1,76 кг/с.

Рассчитываем концентрации растворов в корпусах:


Концентрация раствора в третьем корпусе

соответствует заданной концентрации упаренного раствора
.

1.2 Определение температур кипения раствора

Температура кипения раствора в корпусе

определяетсякак сумма температур греющего пара последующего корпуса
и температурныхпотерь

, (1.3)

где

– соответственно температурная, гидростатическая и гидравлическая депрессии, К.

Для определения температур греющего пара примем, что перепад давлений в установке ∆P распределяется между корпусами поровну:

, (1.4)

где PГ1 – давление греющего пара в первом корпусе, МПа;

Pбк – давление в барометрическом конденсаторе, МПа.

Тогда давление греющих паров, МПа, в корпусах составляет:

PГ1=0,4МПа

PГ2 = PГ1 – ∆P= 0,4 – 0,1284 = 0,2716 МПа

PГ3 = PГ2 – ∆P= 0,2716 – 0,1284 = 0,1432 МПа

Pбк = PГ3 – ∆P= 0,1432 – 0,1284 = 0,0148 МПа


По давлению греющего пара находим его температуру и теплоту парообразования

(табл. 2.1) по корпусам.

Таблица 1.1 – Температуры и теплоты парообразования

Давление, МПа Температура, ºС Теплота парообразования, кДж/кг
PГ1=0,4 tГ1=143,6 rГ1=2139
PГ2=0,2716 tГ2=129,78 rГ2=2180
PГ3=0,1432 tГ3=110,4 rГ3=2234
Pбк=0,0148 tбк=53,71 rбк=2372,3

1.2.1 Определение температурных потерь