Смекни!
smekni.com

Восстановление вкладыша подшипника MAN K6Z 57/80 (стр. 6 из 7)

На практике встречаются также выкрашивание и отслаивание гальванического слоя у многослойных вкладышей. Для определения истинных причин этого дефекта необходимо произвести металлографические исследования, так как причиной могут быть и усталостные разрушения, и образование медно-оловянных кристаллов из-за диффузии олова из гальванического слоя в бронзу, которые снижают прочность сцепления гальванического слоя с бронзой. С повышением температуры вкладыша скорость диффузии значительно возрастает. Для ее предотвращения у большинства вкладышей между слоем бронзы и свинцово-оловянным сплавом наносится тонкий слой никеля (барьерный). Однако при высоких температурах запирающие свойства никелевого слоя снижаются и возможна диффузия металлов в зоне соединения, которая затем станет причиной отслоения гальванического слоя. Вкладыши подшипников с подобным дефектом должны быть заменены.

Коррозионные повреждения. Свинцовистые бронзы и баббиты подвержены химической коррозии. Коррозионные повреждения вызываются наличием в смазочном масле кислот, щелочей, воды и солей. Характер развития коррозионных разрушений у баббита и бронзы отличен. Окисление и вымывание свинца из баббита превращает структуру его поверхностного слоя в рыхлую и пористую. Резко снижается несущая способность подшипника и возрастает износ. Поверхностный слой корродированного баббита легко снимается ногтем пальца. При коррозионном разрушении бронзы окисленный свинец вымывается и остаются кристаллы меди. Структура становится похожей на ту, которая получается при усталостном разрушении вкладыша, и отличить одно явление от другого без специальных металлографических исследований практически невозможно.

Трехслойные вкладыши с гальваническим антифрикционным слоем защищены от коррозии добавлением олова или индия в сплав. При нормальных условиях они крайне редко подвергаются коррозионным разрушениям. Но если температура масла высока, то гальванический слой может разрушиться вследствие коррозии. Темные пятна по краям зоны износа, где температура наиболее высока, - это проявление коррозионного изнашивания. Поверхность этих пятен характеризуется повышенной шероховатостью или пористостью, которая снимается благодаря изнашиванию, и в результате появляется блестящий слой. В этом случае будет наблюдаться, на первый взгляд, обычный повышенный износ, хотя первопричиной являются коррозионные повреждения. В случае применения тяжелого высокосернистого топлива вероятность коррозионного изнашивания значительно возрастает.

На основании вышесказанного следует, что для избежания коррозионных повреждений необходим постоянный и тщательный контроль масла.

Гидроэрозионные, гидроабразивные и кавитационные повреждения довольно часто наблюдаются у вкладышей подшипников. Гидроэрозионные и гидроабразивные повреждения образуются из-за высокой скорости масла и наличия в нем мельчайших твердых частиц, которые вполне свободно проходят с потоком масла через диаметральный зазор подшипника. Эти частицы, обладая большой энергией, ударяются о поверхность трения (в местах изменения направления движения масла), выкрашивают (откалывают) частицы металла этого слоя. Возникновению и развитию эрозии способствует корро- зия, ослабляющая поверхность антифрикционного слоя и делающая ее структуры рыхлой. Коррозия и эрозия зачастую воздействуют одновременно, взаимно дополняя и стимулируя друг друга.

Явление кавитации связано с возникновением и развитием в жидкости паро- или газовоздушных пузырьков. В подшипнике скольжения насыщение слоя смазки происходит в результате особенностей течения масла в зазоре подшипника, приводящих к появлению в жидкости зон неустойчивого течения; попадания в масло воды и создания газо-водомасляных эмульсий при обтекании им различных препятствий; захватывания воздуха и пузырьков масла извне в процессе вращения вала.

В зоне повышенных давлений пузырьки, содержащиеся в смазке, захлопываются. Скорость движения потока жидкости при захлопывании пузырьков достигает 30 м/с. При захлопывании пузырьков выделяется энергия, которая ведет к разрушению материала поверхностного слоя, а при определенной величине этих разрушений - к отказу вкладыша.

Попадание в масло воды ведет к снижению его вязкости и значительному увеличению скорости кавитационного изнашивания, что влечет за собой рост зазоров в подшипнике за счет износа сопряженных поверхностей шейки и вкладыша вследствие увеличения шероховатости, вызванной кавитационным изнашиванием.

Эрозионное и кавитационное изнашивание часто возникают совместно, и поэтому бывает трудно определить, какой из процессов привел к разрушению поверхности вкладыша подшипника.

Фреттинг-коррозия и питтинг. Если две металлические поверхности прижаты одна к другой и одновременно имеют незначительное взаимное перемещение, то в их материале возникают знакопеременные напряжения сдвига (в дополнение к напряжениям сжатия), и при достижении ими предельных значений происходит перенос частиц более мягкого металла с одной поверхности на другую - более твердую. Изнашивание вследствие фреттинг-коррозии посадочных поверхностей происходит при ослаблении или недостаточной затяжке болтов, пластических деформаций поверхностей разъема вкладышей и других нарушений их посадки. Главным следствием этого процесса является ослабление посадки и проворачивание вкладыша, что, в свою очередь, влечет за собой задир шейки вала, полностью нарушает подачу смазки к поршню с последующим задиром поршня и втулки цилиндра.

Явление питтинга подобно фреттинг-коррозии. В этом случае две поверхности находятся под воздействием переменной нагрузки сжатия, например, под воздействием вибрации. При питтинге на посадочной поверхности появляются оспины из-за отделения материала.

Фреттинг-коррозия и питтинг в подшипниках скольжения могут возникать как в результате ошибок монтажа, дефекта вкладышей, так и в результате недостатков всей конструкции подшипника.

Слой свинцово-оловянного сплава или олова, нанесенного на поверхности вкладыша для предохранения от коррозии при хранении, оказывает одновременно благоприятное влияние на уменьшение фреттинг-коррозии.

Расплавление вкладышей подшипников. В тяжелонагруженных подшипниках ВОД и СОД возникновение режима трения при граничной смазке вызывает перегрев, схватывание, заедание и расплавление антифрикционного слоя. Расплавление подшипниковых сплавов вкладышей подшипников при их перегреве приводит к повреждениям шеек коленчатых валов. Контакт расплавленных баббитов и бронз со стальными деталями в напряженном состоянии приводит к образованию трещин и надрывов, становящихся очагами усталостного разрушения. Если расплавленный металл смачивает сталь, то он проникает в раскрытые под действием растягивающих напряжений микротрещины поверхности стальной детали и, адсорбируясь на стенках трещины, уменьшает поверхностную энергию основного материала и, тем самым, снижает его прочность. Из практики эксплуатации известны случаи поломок и задиров шеек коленчатых валов в результате расплавления антифрикционного слоя при нарушении режима смазки подшипника. Существенное влияние на образование таких дефектов имеет высокотемпературный нагрев поверхностного слоя металла вала и связанное с этим снижение пределов текучести и прочности.

Наиболее характерные причины повреждения вкладышей. Причины, приводящие к повреждениям вкладышей, различны. В принципе их можно разделить на причины, определяемые условиями работы подшипника, и причины не зависящие от этих условий. К причинам, зависящим от условий работыподшипникового узла, можно отнести неправильно выбранный запас несушей способности подшипника, неправильно принятые макро- и микрогеометрические соотношения в подшипниковом узле, отсутствие или неверный выбор противовесов, неоптимальные зазоры, неправильно подобранная пара трения«вал - антифрикционный материал», неверный выбор места подвода смазки, сорта смазки и др.


3. Ремонт и восстановление вкладыша

3.1 Выбор материала для антифрикционного слоя вкладышей подшипников

Выбор материалов для пары трения является одним из наиболее сложных вопросов, как при проектировании двигателя, так и при его ремонте. Материалы должны обеспечить надежность подшипникового узла двигателя на установленный срок эксплуатации. Долговечность работы подшипникового узла обеспечивается, прежде всего, износостойкостью его составляющих деталей, т. к. при износе деталей изменяются их геометрия и зазоры и, как следствие этого, гидродинамические характеристики. Изменение этих характеристик может привести к образованию неблагоприятных режимов трения и повреждению поверхностей трения вкладышей и шеек валов из-за задира или усталостного выкрашивания антифрикционного слоя.

Для обеспечения сопротивляемости пластической деформации и усталостным разрушениям, антифрикционный материал должен обладать высокой прочностью и твердостью. Однако такой материал будет обладать пониженной прирабатываемостью и задиростойкостью и будет быстрее изнашивать сопряженные шейки коленчатых валов, чем мягкие пластичные материалы типа баббитов. В связи с этим задача выбора материалов пары сводится к нахождению оптимального сочетания основных свойств, обеспечивающих надежную работу дизеля. Кроме того, нужно принимать во внимание и экономические показатели.

Перечисленные триботехнические свойства проявляются в комплексе и выбираются в зависимости от условий работы двигателя. Дизелестроитель, в отличие от судоремонтника, имеет возможность максимально учесть все факторы, влияющие на работу подшипника, и в соответствии с ними создать оптимальную конструкцию подшипника.

Однако и у судоремонтника имеется некоторая возможность выбора, а именно, выбор композиции материалов и способа нанесения антифрикционного и приработочного слоев. При принятии решения должны учитывать такие критерии, как условия работы двигателя, цена вкладыша, технологичность обслуживания и надежность.