Конкретная технология сжигания топлива на котлах по наиболее эффективным схемам нестехиометрического сжигания (наиболее принятая отечественная терминология) в топках котлов электростанций связана, прежде всего, с использованием совершенно определенных типов горелок с особыми схемами индивидуальной их настройки. Горелки для самой полной реализации подобных технологий должны, по нашему мнению, удовлетворять определенным требованиям. Выделим некоторые из них, на наш взгляд, самые важные.
Во-первых, это почти всегда вихревые горелки, гарантирующие самую надежную стабилизацию воспламенения и горения в индивидуальном факеле. Эти горелки позволяют дополнительно создавать в отдельных областях их факелов зон повышенной и пониженной интенсивности смешения механизмами турбулентности. Это условие всегда должно быть выполнено, так как без него трудно формировать специальные зоны факелов с нужными избытками воздуха и температурами, а настраивать и регулировать эти процессы трудно.
Поэтому, во-вторых, эти горелки должны обеспечивать регулирование интенсивности крутки формируемых ими потоков, - хотя бы части из них. Без этого нельзя оптимизировать размеры отмеченных выше зон индивидуального факела, а также его длину и угол раскрытия в топке. Без этого, в свою очередь, очень трудно влиять на теплотехнические характеристики результирующего факела в топке и на процессы теплообмена по газовому тракту котла.
В третьих, горелки должны формировать длинные факела сильно пониженной крутки. Эти удлиненные факела необходимы для достижения многих целей. Прежде всего, выделим время пребывания первичных продуктов, содержащих NOx, в восстановительной атмосфере. Обеспечив местные избытки воздуха в зоне горения на уровне значений 0,8-0,9 (часто всего это внешние и дальние участки индивидуального факела горелки), можно сильно ослабить процессы образования NOx. При этом они даже почти не будут зависеть (по Рослякову - МЭИ) от температуры, если она не слишком высока. Снижение крутки индивидуальных факелов вплоть до затухания (захлопывания) приосевого обратного тока может, по данным ряда зарубежных и отечественных работ 60-70-х годов, вызывать усиление турбулентного обмена в протяженной приосевой области факела. Это, на наш взгляд, особенно важно для подавления образования сажи (содержат канцерогены группы С20Н12) в области сжигании топлива с недостатком О2, особенно при экстремально низких избытках воздуха (примерно равных 0,4-0,6). Эта зона горения очень важна для экологически чистого сжигания не только природного газа. При сжигании углей, это может понизить образование «топливных» NOx при умеренном выходе «быстрых» NOx (следует из работ Рослякова и зарубежного опыта).
В связи с этим, в четвертых, такие горелки должны иметь дополнительные средства стабилизации горения, так как иначе их эксплуатация вообще невозможна из-за опасности обрыва факела при сильном снижении его крутки в режимах приближения к достижению максимального подавления выбросов оксидов азота. В лучших современных американских и немецких конструкциях горелок чистого и экономичного сжигания твердых топлив этому служат совсем небольшие конусы, уступы, шайбы (плохообтекаемые тела), не вызывающие увеличения аэродинамического сопротивления. Они одновременно являются еще и весьма эффективными турбулизаторами отдельных зон горящего факела за горелкой, где вследствие резкого роста температур снижается эффективность проявления механизмов турбулентного переноса. Еще один прием совместной стабилизации горения и активизации механизмов перемешивания в приосевой зоне факела горелки, был популярен за рубежом уже более 30 лет тому назад, - это установка в центральной части горелок (в потоке воздуха или аэропыли) неподвижного или подвижного (например, горелки фирмы Stork) лопаточного регистра с радиальными или наклонными (диагональными) лопатками. Этот прием применялся также на газовых горелках самой высокой эффективности, например, компанией Deutsche Babcock, а ныне – John Zink, а сегодня - и в ряде подобных новых отечественных конструкций.
В пятых, наряду с возможностью регулировать расходы воздуха и топлива по любому из каналов горелок, необходимо добиться предельного повышения осесимметричости всех формируемых потоков. Считаем, что это очень важно, так как осесимметричность позволяет предельно снижать местные избытки воздуха в факелах и общие - в результирующем факеле всей топки. Это обеспечит значительно более полное использования потенциала любых схем позонного подавления или восстановления «термических» или иных NOx с достижением предельной полноты выгорания в камерной топке любого вида энергетического топлива.
Достижение оптимального минимума перечисленных требований невозможно, следуя требованиям давно устаревших ОСТ. Стандартные или нормализованные горелки не имеют регулируемых регистров (завихрителей) воздуха и дополнительных средств стабилизации горения. Не предусмотрены на них дополнительные средства повышения интенсивности турбулентного обмена в отдельных зонах потоков или факелов на их основе. Регулирование расходов воздуха по каналам - слабое и совершенно недостаточное средство управления смешением и размерами отдельных зон факела. И все приведенные нами выше требования обеспечения безопасного и экономичного сжигания реализуется только в специальных горелках, принципиально противоречащих требованиям ОСТ. Эти горелки иногда называют горелками экологически чистого сжигания. Далее обозначим их как ГЭЧС.
В связи с изложенным, выделим три ключевые технологические проблемы, которые необходимо разрешить при разработке ГЭЧС. Первая – они должны позволить регулировать интенсивность крутки в широком диапазоне, по крайней мере, одного потока. Причем диапазон регулирования крутки должен быть реализован в условиях реальной эксплуатации котла. Вторая – закручивающие аппараты (регистры) ГЭЧС должны обеспечивать исходную (до включения регулирования) структуру потока (факела), которая позволит в эксплуатации изменять крутку в нужном для практике направлении. Третья - решение двух перечисленных технологических проблем должно быть обеспечено с минимальными затратами энергии, в пределах возможностей обычных дутьевых средств энергетического котла.
При анализе горелок и их регистров в отечественной практике ограничиваются сильно условными расчетами крутки по геометрии устройств, используя как стандартные (ОСТ), так и нестандартные и популярные методы (Ахмедов, Найденов, Иванов и др.). Разумеется, что эти расчеты крутки при таких крайне условных подходах никогда не совпадают со значением крутки, найденной интегрированием экспериментальных профилей (полей) скоростей, давлений и плотностей. Но даже независимо от этого противоречия, мы подчеркнем неоспоримый факт: существует несколько типов регистров для закрутки воздуха на горелках. Каждый из них формирует поток с некоторыми существенными для практики особенностями, а простейшие горелки на их основе, имеют некий свой диапазон значений коэффициента аэродинамического сопротивления и характеристик горящего факела. Другой особенностью каждого типа регистра является реальный диапазон регулирования крутки и структуры формируемого им потока в диапазоне допустимых на практики коэффициентов аэродинамического сопротивления.
Известно несколько похожих классификаций регистров горелок или горелок с этими регистрами. Считаем, удобнее принять классификацию Ахмедова (или Найденова) , в которой выделены 1-2 вида камерных регистров и 3 основных типа лопаточных регистров: тангенциальные лопатки (ТЛ), аксиальные лопатки (А), и АТЛ (аксиально-тенгенциальные). Здесь и далее все абревиатуры нами даны по Ахмедову. Однако считаем, что тип АТЛ лучше было бы называть диагональным регистром и обозначить как «Д», что мы и делаем.
Многие современные специалисты считают , что самые успешные типы – это регистры А и Д, которые более удачно совмещаются в неком регистре промежуточного типа, близко напоминающем тип Д, но не выделяемом специально. Они формируют устойчивые длинные, хорошо стабилизированные горящие факела, с хорошими условиями смешения топлива с воздухом в приосевой области корня факела до и после воспламенения - в зоне первичного горения топлива. К таким регистрам можно отнести некоторые конструкции центральных регистров стандартных (ОСТ) отечественных газовых горелок. Другой еще более удачный пример,
-это центральный регистр рекордных по своим характеристикам вихревых горелок камер сгорания газовых турбин корпорации «Siemens» серии «3а». Мы также имеем удачный опыт использования подобных регистров, разработанных нами в 1985 году для специальных вихревых газовых горелок, с необычно длинными, устойчивыми, хотя и слабо закрученными турбулентными факелами, но, тем не менее, сохраняющими устойчивые осевые обратные токи. Горелки эти на практике показали рекордно низкое аэродинамическое сопротивление и были установлены на опытном водогрейном котле с топкой циркулирующего кипящего слоя в котельной УПИ, который был пущен в 1991 году. Регистры этих горелок (комбинация типа А и Д) геометрически совершенно подобны осевым регистрам горелок газовых турбинах «Siemens», поступивших в эксплуатацию в том же году. А необычные параметры горелок опытного котла ЦКС-УПИ были связаны с внедрением нового способа влияния на крутку и структурой потока (о нем речь дальше), который и обеспечил устойчивое воспламенение и полное сгорание природного газа при сверхнизком сопротивлении и пониженной крутке.