Смекни!
smekni.com

Внешние силы. Деформация и перемещение. Определение внутренних усилий (стр. 1 из 2)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра инженерной графики

РЕФЕРАТ

на тему:

«ВНЕШНИЕ СИЛЫ. ДЕФОРМАЦИЯ И ПЕРЕМЕЩЕНИЯ. ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ УСИЛИЙ»

МИНСК, 2008


ВНЕШНИЕ СИЛЫ (НАГРУЗКИ)

Нагрузки, действующие на сооружения и их элементы, представляют собой силы или пары сил (моменты), которые могут рассматриваться как сосредоточенные или распределенные.

Правда, в природе» сосредоточенных сил не бывает. Все реальные силы — это силы, распределенные по некоторой площади или объему. Например, давление колеса на рельс практически передается через небольшую площадку, получающуюся в результате деформации рельса и колеса (см. рис. 1.3). Однако для определения внутренних сил, возникающих в рельсе и колесе на некотором расстоянии от площади передачи давления, можно (на основании сформулированного выше принципа Сен-Венана) распределенную нагрузку заменить сосредоточенной равнодействующей силой, что упростит расчет.

Сосредоточенные нагрузки измеряются в килограммах или тоннах (или в ньютонах по СИ).

Распределенные нагрузки могут быть поверхностными (например, давление ветра или воды на стенку) и объемными (например, собственный вес тела).

Вес стержня, учитывая небольшие размеры его поперечного сечения по сравнению с длиной, рассматривают обычно не как объемную нагрузку, а как нагрузку, распределенную по длине стержня (погонную нагрузку).

Распределенные нагрузки измеряются в единицах силы, отнесенных к единице длины или к единице поверхности, или объема. И сосредоточенные, и распределенные нагрузки могут быть как статическими, так и динамическими.

Статическими называются нагрузки, которые изменяют свою величину или точку приложения (или направление) с очень небольшой скоростью, так что возникающими при этом ускорениями можно пренебречь.

При действии таких нагрузок колебания сооружений и их частей пренебрежительно малы.

Динамическими называются нагрузки, изменяющиеся во времени с большой скоростью (например, ударные нагрузки). Действие таких нагрузок сопровождается возникновением колебаний сооружений. При колебании же вследствие изменения скорости колеблющихся масс возникают силы инерции, пропорциональные (по второму закону Ньютона) колеблющимся массам и ускорениям. Величина этих сил инерции может во много раз превосходить статические нагрузки.

Законы изменения нагрузок во времени могут иметь весьма сложный характер.

В частном случае изменение нагрузки Р может носить периодически повторяющийся характер, так что через одни и те же промежутки времени t максимальные значения нагрузки будут повторяться.

Нагрузки такого типа называются нагрузками с установившимся режимом или повторно-периодическими (рис. 1.4). Расчеты на прочность при действии таких нагрузок рассматриваются в главе XII.

Однако во многих Других случаях изменение нагрузки во времени не имеет установившегося характера (рис. 1.5).

Таковы нагрузки, действующие на детали автомобилей, тракторов, станков, а также нагрузки, действующие на сооружения (дома, мачты и т. п.) от давления ветра, снега и т. д. Эти нагрузки называются повторными нагрузками неустановившихся режимов.

Более глубокое изучение таких нагрузок возможно лишь с помощью методов статистики и теории вероятности, которые применяются для изучения случайных величин.

В качестве примера рассмотрим нагрузку от действия ветра, на
которую рассчитываются башенные краны, мосты, дома и другие
сооружения.

Известно, что скорость ветра, от которой зависит ветровая нагрузка, в одном и том же географическом пункте непрерывно изменяется.

Например, для Московской области, по наблюдениям за длительный период, скорость ветра изменялась в очень широких пределах (рис. 1.6).

Наиболее часто (33% всех случаев) наблюдалась скорость ветра 3,5 м/сек. Но были случаи, когда скорость ветра достигала 12 м/сек (2% всех случаев) и более.

С другой стороны, были случаи, когда скорость ветра была меньшей, иногда равнялась нулю (крайне редко).

Кривые, подобные рассмотренной, называются кривыми распределения. Они дают наглядное представление о степени рассеяния (изменчивости) данной величины.

Какую же скорость ветра нужно принять для расчета?

В качестве первого напрашивается предложение принять наибольшую зарегистрированную скорость ветра. Однако, во-первых, нет никакой гарантии, что за время службы сооружение не подвергнется действию более сильного ветра, чем зарегистрированный ранее. Во-вторых, очевидно, что принимать для расчета сооружения с небольшим сроком службы (например, деревянного) скорость ветра с повторяемостью один раз в 200 или 100 лет неэкономично.

Следовательно, величина расчетной нагрузки должна быть тесно увязана со сроком службы сооружения и со степенью его ответственности.


Все, что сказано о ветровой нагрузке, относится в равной мере и к большинству других нагрузок .

При расчете строительных сооружений величины расчетных нагрузок регламентируются техническими условиями и нормами проектирования.

В машиностроении расчетные нагрузки определяются в зависимости от конкретных условий работы машины: по номинальным значениям мощности, угловой скорости отдельных ее деталей, собственного веса, сил инерции и т. д. Например, при расчете деталей трехтонного автомобиля учитывают номинальный полезный груз, равный трем тоннам. Возможность же перегрузки автомобиля учитывают тем, что размеры сечения деталей назначают с некоторым запасом прочности .

О величине этого запаса прочности подробнее будет сказано в § 12.


ДЕФОРМАЦИИ И ПЕРЕМЕЩЕНИЯ

Как было отмечено ранее, все тела под действием приложенных к ним внешних сил в той или иной степени деформируются, т. е. изменяют свои размеры или форму, либо и то и другое одновременно.

Изменение линейных размеров тела называется линейной, а изменение угловых размеров — угловой деформациями.

При этом увеличение размеров тела называется удлинением, а уменьшение размеров — укорочением.

Если деформации изменяются по объему тела, то говорят о деформации в данной точке тела, в определенном направлении.

Если на поверхности тела, вблизи исследуемой точки, нанести весьма малый прямоугольник 12 3 4 (рис. 1.7, а), то в результате деформации этот прямоугольник в общем случае примет вид параллелограмма 1'2'3'4' (рис. 1.7, б).

Длины сторон прямоугольника изменятся (увеличатся или уменьшатся), а стороны повернутся по отношению к первоначальному положению.

Если, например, длина стороны 23 изменится на величину

s, то отношение

называется средней линейной деформацией (в данном случае средним удлинением) в точке 2..

При уменьшении отрезка sв пределе получим

lim

где величина

называется истинной линейной деформацией в точке 2 в направлении 23.

Изменение первоначального прямого угла между сторонами рассматриваемого прямоугольника γ =α + β будет характеризовать угловую деформацию (или угол сдвига) в данной точке.

Опыт показывает, что деформации как линейные, так и угловые могут после снятия нагрузки или полностью исчезнуть, или исчезнуть лишь частично (в зависимости от материала и степени нагружения).

Деформации, исчезающие после разгрузки тела, называются упругими, а свойство тел принимать после разгрузки свою первоначальную форму называется упругостью.

Деформации же, сохраняемые телом и после удаления нагрузки, называются остаточными, или пластическими, а свойство материалов давать остаточные деформации называется пластичностью.

Зная деформации тела во всех его точках и условия закрепления, можно определить перемещения всех точек тела, т. е. указать их положение (новые координаты) после деформации. Для нормальной эксплуатации сооружения деформации его отдельных элементов должны быть, как правило, упругими, а вызванные ими перемещения не должны превосходить по величине определенных допускаемых значений. Эти условия, выраженные в форме тех или иных уравнений, называются условиями жесткости. В некоторых случаях допускаются небольшие пластические деформации (для конструкций из железобетона, пластмасс и для конструкций из металла при действии высоких температур).


МЕТОД СЕЧЕНИЙ

Внутренние силы (силы упругости), возникающие в теле под действием нагрузки, будем считать силами, непрерывно распределенными в соответствии с принятым допущением о непрерывности материала тела.

Как определяются эти силы в любой точке тела, будет показано ниже.

Теперь же займемся определением тех равнодействующих усилий (в том числе и моментов), к которым приводятся в сечении эти силы

упругости. Эти равнодействующие усилия представляют собой не что иное, как составляющие главного вектора и главного момента внутренних сил.

Для определения внутренних усилий (или внутренних силовых факторов) применяется метод сечений, заключающийся в следующем.