Состав промывочной жидкости, обеспечивающей эффективность процесса бурения скважин, определяется:
1) геологическим строением района работ;
2) техническими условиями бурения;
3) требованиями к охране окружающей среды;
4) особенностями организации промывочного хозяйства.
Как правило, промывочная жидкость - это глинистый раствор, но применяют и безглинистые буровые растворы.
По влиянию на структуру и вязкость буровых растворов все реагенты можно разделить на три группы: стабилизирующие, структурообразующие и пептизирующие. Углещелочной реагент (УЩР) и торфощелочной реагент (ТЩР) широко применяются для обработки растворов с целью снижения водоотдачи, вязкости, статического напряжения сдвига (СНС) и повышения стабильности. Эти реагенты являются натриевыми солями гуминовых кислот, растворимых в воде. Их можно получить непосредственно на буровой из бурого угля или торфа путем воздействия на них каустической содой. Для этого в определенном лабораторным путем соотношении помещают в глиномешалку дробленый бурый уголь или торф и каустическую соду, добавляют воду, проводят тщательное их перемешивание. Через некоторое время (порядка суток) основная масса растворимых гуминовых кислот перейдет в раствор и прореагирует с каустической содой.
В 1962 г. начато изготовление и применение сухих углещелочных реагентов, полученных аналогичным образом в заводских условиях. Их использование упрощается до простого введения непосредственно в циркулирующую систему или глиномешалку определенного количества реагента.
Сульфит-спиртовая барда (ССБ) является отходом целлюлоз но-бумажного производства и применяется для снижения вязкости, водоотдачи и толщины образуемой глинистой корки.
Эффективным и удобным в транспортировании является конденсированная сульфит-спиртовая барда КССБ, применяемая также для регулирования вязкости, водоотдачи и СНС.
Карбоксиметилцеллюлоза (КМЦ) является наиболее эффективным реагентом для стабилизации и снижения вязкости буровых растворов, особенно в условиях воздействия агрессивных высокоминерализованных сред (разбуривание пластов солей, внедрение в раствор рассолов, использование сильно минерализованных растворов).
Схема влияния основных химических реагентов, применяемых для обработки буровых растворов, на их свойства, разработанная во Всесоюзном научно-исследовательском институте буровой техники (ВНИИБТ), представлена на рисунке 110.
В условиях высоких температур (на забое глубоких скважин температура окружающих пород может достигать 200°С и более) влияние многих реагентов на параметры раствора снижается. Наиболее устойчивы к температурным воздействиям сульфоэфиры, целлюлоза, КМЦ. Однако стабилизирующее воздействие последней в условиях высоких температур снижается, и ее добавки требуются в больших количествах. Термостойкими реагентами являются УЩР и КССБ, но их применение ограничено пресными растворами. Наибольшую термостойкость растворам придает гипан (гидролизованный полиакрилонитрин), созданный на основе водорастворимых полимеров. Для снижения вязкости при высоких температурах используют соли хроматной кислоты (хроматы и бихроматы калия и натрия). Они наиболее эффективны при температуре более 100°С, когда другие реагенты для снижения вязкости неэффективны.
Регулирование разности пластового и гидростатического давления в системе "скважина-пласт" осуществляется регулированием плотности промывочных жидкостей. Для снижения плотности ниже 1 г/смз используют аэрацию промывочных жидкостей, а для повышения их плотности применяют утяжелители.
Для утяжеления промывочной жидкости в зависимости отвели чины ее плотности, которую требуется получить, использую раз личные материалы. Использование малоколлоидных глин в качестве наполнителей раствора позволяет увеличить его плотность на 0,2-0,3 г/смз. Применение молотого мергеля, мела и известняка способствует увеличению плотности 0,3-0,5 г/см3.
Достижение больших величин плотности бурового раствора возможно при использовании барита, гематита и магнетита.
Барит BaS04 - белый порошок, получаемый из минерального барита или химических отходов. Его плотность колеблется в пределах от 3,5 до 4,2 г/смз. Баритовый утяжелитель менее абразивен, хорошо адсорбируется глинистыми минералами. При его применении можно получить стабильные буровые растворы с плотностью до 2,0-2,5 г/см3.
Гематит и магнетит являются продуктами измельчения соответствующих руд, имеют плотность в пределах 3,8-4,7 г/см3. При использовании в качестве утяжелителя отличаются повышенным абразивным воздействием.
В процессе проводки скважин в буровой раствор поступают разрушенная порода (шлам) и пластовая жидкость. Указанные компоненты влияют на свойства бурового раствора. Например, при разбуривании пластов глин в буровой раствор поступает большое количество глинистых минералов, способных диспергировать и увеличивать вязкость и СНС растворов. Пластовые воды могут быть сильно минерализованы и вызывать коагуляцию бурового раствора.
Для поддержания параметров бурового раствора в требуемых пределах применяют его физико-химическую обработку. Существует два варианта обработки. Первый заключается в разбавлении бурового раствора водой при увеличении его вязкости и СНС. При этом увеличиваются водоотдача и толщина глинистой корки. Для поддержания этих параметров раствор обрабатывают реагентами, снижающими водоотдачу, а плотность раствора регулируют добавлением утяжелителей. Такой вариант прост, но требует большого расхода реагентов и утяжелителя и приводит к наработке излишнего объема раствора. Второй вариант включает механическое удаление шлама и излишков диспергированных частиц твердой фазы с последующей обработкой химическими реагентами и добавлением или регенерацией утяжелителя. Во втором случае объем раствора не увеличивается и резко сокращается расход реагентов и утяжелителя.
Цементный раствор, применяемый для крепления скважин, выполняет следующие функции:
1) разобщение (исключается сообщение) проницаемых горизонтов в скважине;
2) обеспечение механической опоры для обсадной колонны;
3) защита обсадной колонны от коррозии сульфатсодержащими пластовыми водами;
4) укрепление и создание опоры для стенок скважины (совместно с обсадной колонной) для предотвращения обвала пород.
Кроме расходных материалов, при строительстве скважины используют различные конструкционные материалы. Часть этих материалов используют в виде изделий заводского изготовления, а часть применяется при сооружении различных устройств на месте проведения буровых работ и ремонте оборудования. Сюда относятся металлы, пластические массы, древесные материалы, железобетон.
Таблица 2. Рекомендуемые области применения тампонажных цементов
Признаки | ||||||
Состав цемента | По температуре применения | По средней плотности цементного теста | По устойчи- вости к воздействию агрессивных ппастовых вод | По объем- ным дефор- мациям при схватывании | ||
Тампонажные цементы на основе портландцементного клинкера | ||||||
бездобавочные | Для нормальных и умеренных температур | Нормальное | Требования не предъявляются | Требования не предъявляются | ||
с минеральными добавками | То же | Облегченное, нормальное и утяжеленное | Устойчивы к сульфатным пластовым водам | Тоже | ||
со специальными добавками | Для низких, нормальных и повышенных температур | Нормальное | То же, при введении соответствующих специальных добавок | Тоже | ||
с минеральными и специальными добавками | Для низких, нормальных, повышенных и умеренно высоких температур | Облегченное, нормальное, утяжеленное | Устойчивы к сульфатным пластовым водам и другим видам агрессии | Требования не предъявляются; расширяющиеся безусадочные | ||
Тампонажные цементы на основе глиноземистого цемента | Для низких и нормальных температур | Облегченное, нормальное | Требования не предъявляются | Расширяющиеся безусадочные | ||
Цементы бесклинкерные | Для повышенных, высоких, сверхвысоких и циклически меняющихся температур | Облегченное, нормальное и утяжеленное | Устойчивы к сульфатным пластовым водам | Требования не предъявляются |
Вторичное вскрытие проводят различными методами. Применяют пулевую, торпедную, кумулятивную, гидропескоструйную, гидромеханическую, механическую и химическую перфорации. Наибольшее применение получило вторичное вскрытие пласта кумулятивной перфорацией. Кумулятивные перфораторы обеспечивают наибольшее проникновение перфорационного канала в пласт и просты в использовании. Лучшие кумулятивные перфораторы позволяют получить каналы длиной 1,3 метра. Для кумулятивной перфорации используют корпусные и бескорпусные перфораторы. В безкорпусных перфораторах кумулятивные заряды закрыты герметичной оболочкой и спускаются в скважину в виде гирлянды на стальной ленте (рис.10, а). В корпусных перфораторах кумулятивные заряды монтируют в металлическом корпусе однократного или многократного применения. На рисунке 9 (б) изображен корпусный кумулятивный перфоратор многократного использования. Спуск перфоратора в интервал вторичного вскрытия пласта производят на колонне труб НКТ или на канат-кабеле. В последнем случае перфоратор спускают либо непосредственно через обсадную колонну, либо через колонну труб НКТ. Существуют два основных способа вторичного вскрытия - на репрессии, когда забойное давление превышает пластовое, и на депрессии, при забойном давлении меньше пластового. Вторичное вскрытие на депрессии производят с использованием герметизирующего устьевого оборудования.