Смекни!
smekni.com

Проектирование технологических процессов изготовления корпуса поглощающего аппарата (стр. 3 из 5)

Для наплавки пластинчатым электродом из малоуглеродистой стали толщиной 3—4 мм не требуется сварочных автоматов и калиброванной сварочной проволоки. В этом случае, как и при многоэлектродной наплавке, обеспечивается сварка хорошего качества. Ширина и длина пластины соответствуют наплавляемой поверхности. На наплавляемую поверхность насыпают слой флюса толщиной 4 мм, а затем укладывают электрод по специальным упорам флюсоудерживающего устройства. Один конец электрода замыкают на деталь, а другой подсоединяют через держатель к проводу от сварочного трансформатора. На электрод опять насыпают слой флюса толщиной 15—20 мм, а сверху флюса кладут груз для лучшего формирования сварочного валика при расплавлении электрода. После этого от электрода отодвигают установочные упоры и включают сварочный ток. В месте контакта электрода с поверхностью возникает дуга, и электрод начинает плавиться, причем сварочный процесс происходит автоматически до полного расплавления пластины.

Описанный способ позволяет изменять толщину наплавки за счет укладки в нужном месте дополнительной пластины соответствующего размера. Кроме того, при этом способе легко достигается повышение твердости, а следовательно, и износостойкости наплавленного металла введением в сварочную ванну легирующих присадок.

Несмотря на наличие отработанных технологий для наплавки изношенных мест деталей под флюсом, в практике ремонта автосцепки наиболее эффективным является способ наплавки порошковой проволокой с помощью шлангового полуавтомата. Это способ совмещает в себе маневренность, присущую ручной дуговой сварке, и высокую производительность труда, характерную для способов автоматической наплавки в среде защитных газов.

Немаловажную роль для изнашиваемых деталей автосцепного устройства придается износостойкости наплавленных поверхностей, поэтому все поверхности деталей, за исключением труднодоступных для обработки, должны восстанавливаться износостойкими наплавками.

Несмотря на внедрение высокопроизводительных методов наплавки, ручная дуговая сварка необходима главным образом для заварки трещин, допускаемых правилами ремонта, и для наплавки небольших или труднодоступных поверхностей деталей.

При ремонте розетки (рис. 5) разрешается:

1) наплавка изношенных опорных мест А для маятниковых подвесок;

2) наплавка изношенных поверхностей проема Б;

3) наплавка деформированной поверхности В ударной части;

4) заварка трещин Г в верхних углах проема, не выходящих на привалочную поверхность, с постановкой в двух средних углублениях вставок и обваркой их по периметру;

5) заварка трещин Д во фланце;

6) заварка трещин Е на ребрах жесткости в верхней ударной части;

7) заварка трещин Ж грани ударной части с постановкой в средних углублениях двух вставок и обваркой их по периметру;

8) заварка трещин 3 в нижних углах проем, не выходящих на привалочную поверхность.

2.6.16. При деповском ремонте вагонов разрешается производить приварку к ударной розетке отбитых частей согласно Технологической инструкции по сварке передних упоров № 317 ПКБ ЦВ.


Рисунок 5 – Ударная розетка

5.1 Разработка технологических операций

А) Расчет режима ручной дуговой наплавки изношенных опорных мест для маятниковых подвесок

Используем электроды НР – 3 (Э46), диаметр электрода – 5мм.

Толщина наплавленного слоя:

где диз – величина износа, мм

до – величина припуска на механическую обработку, мм.

диз = 4 – 8 мм.

до = 2 мм.

д н = 4 мм + 2 мм = 6 мм.


Рисунок 6 - Схема наложения валиков

Соотношения между основными параметрами наплавленного слоя можно определить по выражениям:

;

;

;

.

Количество слоев наплавки равно 3.

Ориентировочная величина тока, А:

Напряжение дуги, В:

Uд=20+0,04∙Iн=30 В.

Скорость наплавки, м/ч:


,

где бн – коэффициент наплавки, г/Ач,

Fн – площадь наплавленного слоя одного прохода,см2,

с – плотность металла шва, г/см3

с=7,8 г/см3; подставив значение получим:

Выбираем род тока постоянный, полярность обратная. Как правило, скорость наплавки можно не рассчитывать, так как она устанавливается сварщиком вручную при обеспечении размерных параметров наплавленного слоя.

Выбирая род тока, следует учитывать экономические и эксплуатационные преимущества переменного тока перед постоянным. Так, характер наплавочных работ обусловливает необходимость получения слоя наплавленного металла за счет возможно большего количества электродного металла при минимальной глубине проплавления основного металла. Поэтому для наплавочных работ следует предпочесть постоянный ток и вести наплавку на обратной полярности, обеспечивающей более высокую производительность процесса и меньшую глубину проплавления поверхности детали.

В качестве оборудования для наплавки мною выбран сварочный выпрямитель ВДУ – 506, электрододержатель ЭДС – 300 ГОСТ 14651 – 78

Б) Расчет режима автоматической наплавки под плавленым флюсом.

Выбираем марку электродной проволоки НП – 30, марка флюса АН – 348.

Толщина наплавленного слоя:

Диаметр электрода – 4мм.

где диз – величина износа, мм

до – величина припуска на механическую обработку, мм.

диз = 4 – 8 мм.

до = 2 мм.

Соотношения между основными параметрами наплавленного слоя можно определить по выражениям:

;

;

;

.

Количество слоев наплавки равно 2 .

Ток наплавки, А:


где j – плотность тока, А/мм2. J = 60 – 140 А/мм2

Напряжение дуги, В:

Скорость подачи электрода, м/ч:

где бр – коэффициент расплавления, г/А∙ч;

Iн – ток наплавки, А;

dэл – диаметр проволоки, мм;

с – плотность металла проволоки, г/мм3.

Коэффициент расплавления электродной проволоки сплошного сечения при наплавке под флюсом определим для постоянного тока обратной полярности бр=10 – 12 г/А∙ч.

Шаг наплавки:


Скорость наплавки:

где Fн – площадь наплавленного металла,

,

где а – коэффициент, учитывающий отклонение площади наплавленного валика от площади прямоугольника. а = 0,6 – 0,7.

,

где ш – коэффициент потерь металла на разбрызгивание, составляет 1 – 3%, следовательно

г/А∙ч.

Вылет электродной проволоки, мм


Толщина флюса составляет 35 мм, т.к. ток наплавки находится в диапазоне 400-800 А.

Выбираем род тока – постоянный, полярность – обратная.

Для автоматической наплавки под флюсом обычно применяется оборудование, изготовленное самим ремонтным предприятием. Установка состоит из модернизированного токарного станка, подающего механизма, флюсоподающего устройства и источника питания. В качестве вращателя используется токарный станок, частота вращения шпинделя которого снижается в 20-30 раз. Для этого между электродвигателем привода и первым валом коробки скоростей устанавливается редуктор. Механизм подачи электродной проволоки и флюсовое, оборудование устанавливаются на суппорте станка. Источник питания: преобразователь АСБ–300–2, сварочный генератор ГСО-300, номинальное напряжение 30В, номинальная сила тока 300 А, пределы регулирования силы тока 75-320 А.