Микроконтроллер с требуемой периодичностью обновляет управляющие слова на своих выходных портах. Некоторая часть управляющего слова интерпретируется как совокупность прямых двоичных сигналов управления (СУ), которые через схемы формирователей сигналов (усилители мощности, реле, оптроны и т.п.) поступают на исполнительные механизмы (ИМ) и устройства индикации. Другая часть управляющего слова представляет собой упакованные двоичные коды, которые через цифро аналоговые преобразователи (ЦАП) воздействуют на исполнительные механизмы аналогового типа. Если объект управлении использует цифровые датчики и цифровые исполнительные механизмы, то наличие ЦАП и АЦП в системе необязательно.
В состав аппаратуры связи, которая как правило, строится на интегральных схемах серии ТТЛ, входит регистр флагов, на котором фиксируется некоторое множество специфицируемых признаков как объекта управления, так и процесса работы контроллера. Этот регистр флагов используется в качестве аппаратурного средства реализации механизма взаимной синхронизации относительно медленных и вероятностных процессов в объекте управления и быстрых процессов в контроллере. Регистр флагов доступен как контроллеру, так и датчикам. Вследствие этого он является удобным местом фиксации сигналов «готов»/«ожидание» при передачах с квитированием или сигналов «запрос прерывания»/«подтверждение» при взаимодействии контроллера и объекта в режиме прерывания. Если МКсистема имеет многоуровневую систему прерываний, то регистр флагов содержит схему упорядочивания приоритетов.
Для аппаратурной реализации временных задержек, формирования сигналов требуемой частоты и скважности в состав аппаратуры связи включают программируемые интервальные таймеры в том случае, если их нет в составе микроконтроллера или их число недостаточно.
Законы функционирования микропроцессорной системы управления со структурой, показанной на рис. 1 всецело определяются прикладной программой, размещаемой в резидентной памяти программ микроконтроллера. Иными словами, специализация контроллера типовой структуры на решение задачи управления конкретным объектом осуществляется путем разработки прикладных программ микроконтроллера и аппаратуры связи микроконтроллера с датчиками и исполнительными механизмами объекта.
2. Разработка системы управления механизмом зажигания
2.1 Постановка задачи
Одной из проблем двигателя внутреннего сгорания является запаздывание момента зажигания при увеличении частоты вращения коленвала, т.к. скорость преодоления поршнем верхней мертвой точки возрастает вместе с оборотами двигателя, а время сгорания топлива остается неизменным. Это приводит к значительной потере мощности двигателя, повышенному расходу топлива и существенному ограничению максимальных оборотов двигателя.
Для нормализации работы двигателя необходимо применение механизма, изменяющего момент зажигания в зависимости от оборотов двигателя, т.е. опережение момента при увеличении оборотов. В основном это достигается применением механических устройств рис. 2.1, принцип действия которых основан на изменении положения грузиков под воздействием центробежной силы. Недостатками таких механизмов являются нестабильная работа (особенно на низких оборотах) и невозможность достижения нужного угла опережения зажигания на высоких оборотах.
Рисунок 2.1 Механическая система опережения зажигания.
Избавиться от этих недостатков позволяет применение электронного механизма опережения зажигания. За основу этого механизма берется датчик, считывающий обороты распредвала и подающий сигнальные импульсы на устройство управления моментом зажигания.
К устройству управления предъявляются следующие требования:
1. прием сигнала от датчика;
2. преобразование сигнала в зависимости от оборотов двигателя (распредвала);
3. возможность изменять значение угла опережения зажигания.
4. сохранение работоспособности при воздействии высоких температур.
5. устойчивость к воздействию вибраций.
Оптимальным решением в данном случае является построение устройства управления моментом зажигания на микроконтроллере, так как преобразование сигналов датчика обеспечивается программно, что дает возможность регулировки. Термостойкость достигается применением микроконтроллера соответствующего уровня (с индексом). Устойчивость к вибрациям обеспечивается высокой степенью интеграции и малой массой радиоэлементов.
2.2 Разработка структурной схемы
Для определения частоты вращения двигателя, как уже говорилось, необходима установка специального датчика, на основе которого будет строиться вся схема устройства рис. 2.2. Следующий элемент механизма – электронная система смещения импульса, основанная на микроконтроллере. Микроконтроллер принимает сигнал от датчика, обрабатывает его с помощью программы, записанной в его ПЗУ, и передает уже обработанный сигнал на выход. Так как микроконтроллер не в состоянии работать с высокими токами, в систему вносится ключевая схема.
Рисунок 2.2 Структурная схема устройства.
Так же необходимым шагом является включение в схему устройства стабилизатора напряжения. Он нужен для преобразования напряжения бортовой сети транспортного средства +12В в напряжение, приемлемое для питания микроконтроллера, и гашения его скачков.
Блок управления включается для регулировки и точной настройки программы микроконтроллера под конкретный двигатель, корректировки момента искрообразования и угла опережения зажигания.
Катушка зажигания предназначена для преобразования 12 вольтового входного импульса со смещением в усиленный импульс со смещением амплитудой до 15000В. Такое высокое напряжение обеспечивает образование стабильного дугового разряда на контактах свечи зажигания.
2.3 Разработка принципиальной схемы
Датчик Холла это индукционный датчик, действующий на основе эффекта Холла. Он применяется в бесконтактных системах зажигания автомобильного типа. Построение системы на основе этого датчика является оптимальным решением, так как он адаптирован для работы с двигателями внутреннего сгорания. Для работы датчика Холла на распредвал устанавливается стальной экран (диск) рис. 2.3, имеющий два выреза, по 120 градусов каждый. Датчик устанавливается так, чтобы диск вращался в его проеме.
Рисунок 2.3 Экран датчика Холла и расположение датчика относительно экрана.
Датчик имеет три вывода: питание +12В. (красный), земля (черный) и сигнальный провод (зеленый). При входе шторки в проем датчика, он вырабатывает прямоугольный импульс с амплитудой от 9 до 12В (рис. 2.4). При выходе шторки, амплитуда резко падает до минимального значения – не более 0,4В. Сигналом для искрообразования служит окончание импульса.
Рисунок 2.4 – Временная диаграмма датчика Холла.
Параметры вырабатываемых датчиком импульсов:
где Ти – длительность импульса,
Тз – длительность задержки импульса.
U max = 9 – 12В. (2.2)
где U max – максимальная амплитуда импульса.
U min = 0 – 0,4В. (2.3)
где U min минимальная амплитуда импульса.
В автомобильных системах зажигания с датчиком Холла работает коммутатор, выполняющий роль ключевой схемы. Плюсами применения коммутатора являются: наличие встроенной схемы питания датчика Холла, подача выходного импульса только при изменении входного, формирование выходного импульса, позволяющего максимально реализовать потенциал катушки зажигания.
Необходимыми частями устройства являются цепи, согласующие микроконтроллер с остальными элементами схемы.
Принципиальная схема системы управления механизмом зажигания приведена в чертеже ДП.230101.802.287.Э3.
Питание микроконтроллера обеспечивает цепь, состоящая из элементов VD1 (снижение уровня пульсаций), C2 и C3 (отфильтровывание несглаженных пульсаций), микросхемой DA1 КР142ЕН5А (преобразование 12В входного напряжения в 5В выходного).
RCцепь, состоящая из элементов R1, R3 и C1 снижает напряжение выходного сигнала датчика Холла (9 – 12В) до приемлемых микроконтроллером 5В.
К выводам микроконтроллера OSC1 и OSC2 подключается резонатор ZQ1, предназначенный для определения программой микроконтроллера временных интервалов сигналов датчика Холла.
Транзистор VT1 работает в ключевом режиме. Он предназначен для усиления выходного импульса микроконтроллера до уровня, приемлемого коммутатором. Оптимальным вариантом является применение высокочастотного маломощного транзистора, например КТ3117А. Резистор R4 предназначены для формирования тока базы транзистора VT1.
Ключи S1 – S5 нужны для подачи сигналов на входы микроконтроллера RB4 – RB7. Данные сигналы предназначены для корректировки переменных программы микроконтроллера.
2.4 Выбор элементов принципиальной схемы
Основным элементом устройства управления моментом зажигания является микроконтроллер. Применение микроконтроллера повышает уровень интеграции и надежность устройства. Так же это дает возможность изменять характеристики момента искрообразования.
Сейчас на рынке предлагается множество микроконтроллеров различных производителей. Самыми распространенными семействами микроконтроллеров являются AVR фирмы “Atmel” и PIC фирмы “MicroChip”.
Сравнительный анализ AVR и PIC микроконтроллеров.
AVR – микроконтроллер фирмы “Atmel” – это 8 – разрядные микроконтроллеры с базовой RISC архитектурой. Они привлекают внимание разработчиков наилучшим соотношением быстродействия и энергопотребления. В продаже имеется более 15 типов микроконтроллеров. AVR – контроллеры имеют 89 – 133 инструкции, большинство из которых выполняется за один период тактовой частоты. AVR – контроллеры имеют 32 8 – битных регистра общего назначения. Максимальная частота микроконтроллеров достигает 16 МГц, в основном же колеблется от 8 до 10 МГц. Большое количество инструкций сильно усложняет обучение программированию и само программирование микроконтроллеров, что является существенным недостатком AVR – контроллеров при взгляде со стороны пользователя.