Смекни!
smekni.com

Оборудование для зонной плавки (стр. 2 из 4)

Чтобы уменьшить влияние электромагнитных полей, термопары эк­ранируют, а опирали электропечей снабжают бифилярной намоткой. Для наблюдения за процессом предусмотрены смотровое окно и устрой­ство для подсветки, облегчающее установку ампулы в начале процесса. Конструкции электропечей выполнены таким образом, чтобы можно было заменять нагреватели, не извлекая печей из камеры. Теплоизоля­ционные блоки, выполненные из асбестоцемента, помещенные у торцов печей, компенсируют падение температуры. Полезная емкость камеры сведена к минимуму для уменьшения в ней конвективных токов сжато­го газа.

Рама установки выполнена в виде стола, закрытого листами. Стол установлен на четырех регулируемых по высоте опорах, придающих не­обходимый угол наклона рабочей камере, смонтированной на столе. На столе размещены вентили для подачи и стравливания газа, осушитель газа, а внутри стола смонтированы коллектор водяного охлаждения ка­меры, подогреватель для линии подачи воды в индуктор. Внутри стола установлен также электропривод с сельсином-датчиком.

Вход и уплотнение вала привода перемещения ампулы в камеру вы­сокого давления представляют конструктивные трудности, требуется значительное увеличение мощности двигателя привода, чтобы преодо­леть трение в уплотнении камеры. Это в свою очередь создает вредные вибрации камеры и ампулы с лодочкой. В тоже (время для перемеще­ния легкой ампулы с лодочкой практически необходим маломощный, ки­нематический привод. Поэтому в описываемой конструкции применен сельсинный электропривод.

Сельсин-приемник вместе с механизмом перемещения помещен в рабочую камеру высокого давления, а сельсин-датчик и электродвига­тель для его вращения смонтированы на отдельной плите. Сельсин-дат­чик передает синхронное вращение сельсин - приемнику и соединяется с ним через штекерный разъем.

Вращение сельсин - датчика осуществляется от электродвигателя по­стоянного тока, обороты которого плавно регулируются. Переключение ступеней редуктора обеспечивает рабочее и возвратное (ускоренное) пе­ремещение ампулы. Для наблюдения за перемещением и положением ампулы относительно нагревателя зоны внутри закрытой камеры на сельсин - датчике смонтирован дублирующий механизм, аналогичный ме­ханизму перемещения ампулы. Ползун дублирующего механизма, имею­щий ту же скорость, что и ползун механизма перемещения ампулы, сое­динен нитью с указателем перемещения ампулы, расположенным на пе­редней стороне стола.

В камере создается давление инертного газа, необходимое для пре­дотвращения разрушения запаянной кварцевой ампулы под давлением паров летучего компонента. Газ поступает из баллона через редуктор, осушитель и игольчатый вентиль. При помощи другого такого же венти­ля сбрасывают газ из камеры-

Осушка газа из баллона в осушителе необходима для предотвраще­ния конденсации влаги на витках индуктора и на смотровом стекле. Пос­ле пуска газа в камеру и создания рабочего давления вентиль баллона и вентиль впуска газа в камеру перекрывают. При установившемся про­цессе, когда температурный режим стабилизирован, давление в камере остается постоянным. Размещенный внутри камеры индуктор можно подключить в случае необходимости питания его теплой водой к водоподогревателю, что уменьшает конденсацию на индукторе паров влаги.

Для питания индуктора установку комплектуют высокочастотным генератором. В шкафах управления генератором и установкой содер­жится вся необходимая электроаппаратура и приборы для управления установкой. Поддержание и запись температур фоновых электропечей осуществляют автоматически.

Система управления генератором основана на схеме, позволяющей осуществлять автоматическое поддержание заданной температуры в зо­не высокочастотного нагрева и запись ее при помощи электронного по­тенциометра.

Техническая характеристика установки для получения стехиометрических слитков фосфида галлия методом синтеза и зонной плавки в лодочках "приведена ниже:

Размеры ампулы, мм:

диаметр............................................... 31

длина....................................... 450

Длина лодочки, мм.............................. 200

Напрев зоны............................ Индукционный

Параметры нагрева:

частота, МГц.................................... 5,28

мощность, кВА:

колебательного контура .... 16

потребляемая из сети 40

Температура 'расплавленной зоны, °С . 1550
Напрев температурного фона .... Печи сопротивления

Число фоновых печей............. 2

Максимальная мощность каждой печи.

КВт ........................................ 3

Температура печей, °С.......... 550; 900

Избыточное противодавление инертного

газа в камере, ат ......... До 35

Объем камеры высокого давления, л . 32
Скорость перемещения ампулы, мм/мин:

рабочего хода ...................... 0,12—0,85

холостого................................ 29

Ход ампулы с лодочкой, мм ..... 200

Масса агрегата, кг................. 475

3 Установки бестигельной зонной плавки

Преимущества бестигельной зонной плавки, позволяющие предот­вратить взаимодействие очищаемого слитка с материалом контейнера, привели к созданию многочисленных конструкций аппаратов и их широ­кому применению для исследований и промышленных условий, в пер­вую очередь в производстве полупроводникового кремния.

Наибольшее распространение получили установки бестигельной зон­ной плавки высокочастотным нагревом. Установки с электроннолучевым нагревом применяют для производства особо чистых тугоплавких метал­лов и выращивания их монокристаллов. Эти способы нагрева позволяют достигать наибольшей напряженности теплового поля и создать узкую расплавленную зону. При нагреве токами высокой частоты происходит интенсивное перемешивание на расплавленном участке, способствующее ускорению диффузии примесей, в расплавленную зону. Имеются установ­ки бестигельной зонной плавки и с графитовым нагревателем сопротив­ления, а также со световым нагревом зоны.

Перемещение расплавленной зоны можно осуществлять двумя спо­собами, создавая поступательное движение нагревателя относительно неподвижного слитка или слитка относительно неподвижного нагрева­теля. Это отражается на конструктивном оформлении функциональных узлов и механизмов печного блока установок.

В зависимости от технологических требований процесс бестигельной зонной плавки можно проводить в 'восстановительной атмосфере, в ат­мосфере инертного газа и в вакууме.

Принципиальная схема камеры установки бестигельной зонной плавки с неподвижным индуктором представлена на рис.5. Очи­щаемый стержень 5 с постоянным сечением, .полученный отливкой в форму, прессованием, выращиванием в процессе восстановления или другими способами, помещают внутрь рабочей камеры 1 так, чтобы он был охвачен индуктором 6, и укрепляют в строго вертикальном положе­нии.

Рис. 5. Установка бестигель­ной зонной плавки с неподвижным индуктором

Верхний (Конец стержня укрепляют в зажиме 4

верхнего штока 3, а нижний конец — в зажиме 9 нижнего штока 11. Зажимы, пружинящиецанги или патроны изготовляют из жаро­прочного материала, например молибде­на. Стержень центрируют внутри индук­тора.

Камера герметично закрывается дверцей 7, в которой имеется смотровое окно 8 для наблюдения за процессом. Смотровое окно выполняют, как правило, из прозрачного кварцевого стекла в виде вертикальной щели. Иногда делают не­сколько круглых смотровых окон, распо­ложенных на дверце напротив стержня. Верхний шток 3 и нижний 11 соосны, этим штокам соответствующими приводами со­общается вращение и синхронное посту­пательное перемещение. Ввод штоков в камеру обеспечивается конструкцией гер­метичных, вакуумных уплотнений. Верх­ний шток, кроме того, имеет возможность регулировочного осевого перемещения, осуществляемого вручную или автомати­чески для регулировки диаметра очищае­мого стержня растяжением или поджатием расплавленной зоны в процессе плавки.

Электропитание индуктора осуществ­ляется через уплотненный ввод 12. Рабо­чая камера подсоединяется к вакуумной системе через патрубок 13, размер кото­рого определяется условиями поддержа­ния в камере необходимого уровня оста­точного давления, типом и размером ап­паратурывакуумной системы. Для со­здания в рабочей камере атмосферыинертного или другого технологически необходимого газа предусмотре­ны вентиль и натекатели 10 и 2.

Процесс очистки стержня бестигельной зонной плавки осуществля­ется следующим образом. Стержень 5 перемещается в начальное поло­жение разогрева зоны, выключается привод перемещения штоков, двер­ца камеры закрывается, в камере создается предварительный вакуум. После подачи воды в систему охлаждения (к камере, штокам, дверце со смотровыми окнами, вакуумной системе) и регулировки расхода охлаж­дающей воды для обеспечения нужного слива с каждого места охлаж­дения вакуум в камере доводят до нужного уровня и устанавливают не­обходимую мощность на нагревателе для разогрева слитка. Когда соз­дается расплавленная зона, включают привод перемещения и привод вращения верхнего и нижнего штоков и осуществляют рабочий проход расплавленной зоны вдоль очищаемого стержня. По окончании прохода зоны, по всей длине стержня и «замораживания» зоны в конечном поло­жении возвращают стержень в исходное положение, снова создают зону; процесс повторяют необходимое число раз.

Для получения в условиях бестигельной зонной очистки стержней в виде монокристаллов требуется применять ориентированную монокри-сталлическую затравку. В этом случае в последовательность действий оператора вносятся некоторые изменения. Стержень-заготовку укрепля­ют в зажиме верхнего штока и центрируют его относительно нагревате­ля, а ориентированную монокристаллическую затравку укрепляют в зажиме нижнего штока. При этом возникает необходимость сращивания в один стержень монокристаллической затравки и стержня. Поэтому выполняют все описанные выше операции до операции первичного рас­плавления зоны, стержень-заготовку перемещают относительно нагрева­теля в такое положение, при котором создается капля расплава на его нижнем конце; разогревают и подводят к капле затравку. Далее про­цесс проводят так, как это описано выше, если размер затравки равен размеру очищаемого стержня. Если же сечение монокристаллической затравки меньше сечения стержня, то необходимо осуществить разращивание переходного конуса под заданным углом до требуемого диа­метра монокристалла. Далее процесс плавки проводят в обычном порядке.