Смекни!
smekni.com

Проектирование привода пресс-автомата с плавающим ползуном (стр. 2 из 8)

Из полюса P3, перпендикулярно отрезку О1А откладываем в выбранном масштабе вектор VА линейной скорости точки А, для этого воспользуемся формулой

lvi =V/μv , (1)

где V – скорость точки (м/с), μv – масштаб вектора скорости ((м/с)/мм).

V=μv*lvi

На плане скоростей вектору VА соответствует вектор а. Величина вектора VА будет одинакова для всех положений механизма и равна:

VА=ω1*l1=1рад*0,05м=0,05 (м/с).

На плане скоростей из полюса P3 отложим вектор а длиной:

а=VА/μv=0,05/0,0007=71,5 мм.

Далее для определения скорости точки С воспользуемся векторным равенством:

VС=VА+VСА , (2)

где VС – абсолютная скорость точки С, вектор, который перпендикулярен кулисе 5, VА– линейная скорость точки А (известная и по величине и по направлению), VСА – вектор скорости точки С, принадлежащей кулисе 5, в относительном вращательном движении шатуна 2 вокруг полюса А.Вектор скорости VСА перпендикулярен отрезку СА. Для построения вектораVС, которому на плане скоростей соответствует вектор с, через конец вектора а проведём прямую, перпендикулярную отрезку АС, на ней будет расположен векторVСА,которому на плане скоростей соответствует вектор са. Далее из полюса P3 проводим прямую, параллельную вектору скорости точки С (перпендикулярно О2С). Пересечение этих двух прямых задаст оба искомых вектора, модули которых будут равняться:

VС=μv*с=0,0007*67=0,0469 (м/с) , VСА=μv*са=0,0007*43=0,0301 (м/с).

Теперь зная скорость VСА, можно найти угловую скорость звена АС (шатуна 2):

ω2=VСА/l2=0,0301/0,6=0,05 (рад/с).

Зная ω2, найдём скорость точки В2 с помощью выражения

VB2=VА+VB2А , (3)

где VB2 – абсолютная скорость точки В2, VА – линейная скорость точки А, VB – скорость точки В2 в относительном движении.

Вектор скорости VBперпендикулярен отрезку АС. Так как направление вектора

VB перпендикулярно отрезку АС, а его модуль равен

VB=ω2*lАВ=0,05*0,3=0,015

(м/с), то необходимо из конца вектора а на плане скоростей отложить отрезок длиной b2a=VB/μv=0,015/0,0007=21,4 (мм) (вектору VBна плане скоростей соответствует вектор b2a) и соединить его конец с полюсом P3. Полученный вектор b2 является вектором скорости точки В2 - VB2, модуль которого равен:

VB2=μv*b2=0,0007*65=0,0455 (м/с).

Скорость точки Е можно определить по принадлежности кулисе 5, которая совершает возвратно-вращательное движение:

VЕ=ω5*lО2Е , (4)

Угловую скорость кулисы 5 найдём из выражения:

ω5=VС/lО2С=0,0469/0,21=0,22 (рад/с) ,

следовательно, VЕ=0,22*0,105=0,0234 (м/с). На плане скоростей вектору VЕ будет соответствовать вектор е, длина которого равна: е=VЕ/μv=0,0234/0,0007=33,45 (мм). Вектор е сонаправлен с вектором с.

Для определения скорости точки В4 воспользуемся векторным уравнением:

VB4=VB2+VB4B2 , (5)

где VB4 – абсолютная скорость точки В4 (векторы скоростей всех точек , принадлежащих пуансону 4, совпадают, так как это звено совершает поступательное движение), VB2 – скорость точки В2 (полюса), VB4B2 – скорость точки В4 в поступательном движении относительно точки В2.

В соответствии с данным уравнением через конец вектора b2 проведём параллельно направляющей В2В4 вертикальную прямую, а из полюса P3 – горизонтальную, параллельно штанге. Пересечение этих прямых задаёт векторы абсолютнойb4 (VB4) и относительной b4b2 (VB4B2) скоростей.

Значение скоростей равны:

VB4=μv*b4=0,0007*63=0,0441 (м/с) ,

VB4B2= μv*b4b2=0,0007*14=0,01 (м/с).

Аналогично построим планы скоростей для всех остальных положений механизма 1…12 (Рисунок 4…9). Все найденные значения относительных угловых и относительных линейных скоростей представлены в Таблице 2. Изменение относительных линейных и угловых скоростей представлены в виде графиков на Рисунках 10, 11.

Таблица 2. Значения кинематических передаточных функций механизма в зависимости от угла поворота кривошипа.

№ положения 1 2 3 4 5 6 7 8 9 10 11 12 1
φ, рад 0 π/6 π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 9π/3 11π/6
/ω1, м 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,05
VB2/ω1, м 0,025 0,032 0,046 0,05 0,043 0,031 0,025 0,037 0,045 0,05 0,046 0,036 0,025
/ω1, м 0 0,024 0,047 0,05 0,041 0,022 0 0,027 0,041 0,05 0,044 0,028 0
/ω1, м 0 0,012 0,023 0,025 0,02 0,011 0 0,014 0,021 0,025 0,022 0,014 0
VB4/ω1, м 0 0,025 0,044 0,05 0,042 0,024 0 0,028 0,042 0,05 0,043 0,027 0
ω2/ω1 0,083 0,082 0,05 0 0,051 0,079 0,083 0,068 0,035 0 0,035 0,062 0,083
ω5/ω1 0 0,115 0,22 0,238 0,193 0,107 0 0,129 0,197 0,238 0,21 0,133 0

Рисунок 10. Зависимости относительных линейных скоростей характерных точек механизма от угла поворота кривошипа.

ряд 1 - VА/ω1

ряд 2 - VB2/ω1

ряд 3 - /ω1

ряд 4 - /ω1

ряд 5 - VB4/ω1

Рисунок 11. Зависимости относительных угловых скоростей звеньев механизма от угла поворота кривошипа

ряд 1 - ω2/ω1

ряд 2 – ω5/ω1

СИЛОВОЙ АНАЛИЗ МЕХАНИЗМА

Анализ нагруженности реального механизма представляет собой довольно сложную задачу. Для упрощения её решения в механизме с одной степенью свободы совокупность всех звеньев и усилий заменяют динамической моделью.

Динамическая модель представляет собой одно звено (звено приведения) с переменными инерционными характеристиками, находящиеся в равновесии под действием момента движущих сил, приложенного со стороны привода, и момента сил сопротивления, определяемого силами полезных и вредных сопротивлений. Так как природа этих усилий различна, то их целесообразно разделить на усилия, независимые от времени – силы статического сопротивления и усилия, связанные с переменностью движения звеньев – силы динамического сопротивления. Соответственно, момент движущих сил, приложенный к кривошипу, определяется двумя составляющими:

Мдв=Мст+Мдин , (1)

где Мдв – момент движущих сил;

Мст – момент движущих сил, предназначенный для преодоления сил статического сопротивления (статический момент);

Мдин – момент движущих сил, предназначенный для преодоления сил динамического сопротивления (динамический момент).

ОПРЕДЕЛЕНИЕ МОМЕНТА МСТ(Φ) ДЛЯ ПРЕОДОЛЕНИЯ СИЛ СТАТИЧЕСКОГО СОПРОТИВЛЕНИЯ

Используя теорему мощностей, можно записать формулу для расчёта статического момента, предназначенного для преодоления сил статического сопротивления:

где Fi – сила статического сопротивления, приложенная в i-ой точке механизма;

Vi – линейная скорость i-ой точки механизма;

ω1- угловая скорость кривошипа 1;

Fi^(Vi/ω1) – угол между вектором i-ой силы и вектором скорости точки её приложения;

n – число сил сопротивления статического характера.

Статический момент, предназначенный для преодоления сил статического сопротивления вычисляется по формуле:

Мст= -[G2·(VB2/ω1)·cos(G2,VB2/ω1)+G3·(VB2/ω1)·cos(G3,VB2/ω1)+G4· ·(VB4/ω1)·cos(G4,VB4/ω1)+G5·(VE/ω1)·cos(G5,VE/ω1)+Q·(VB4/ω1) ·cos(Q,VB4/ω1)] , (3)

Третье слагаемое равно нулю, т.к. угол G4,VB4/ω1 равен 90ْ или 270ْ в зависимости от положения пуансона, следовательно, cos(G4,VB4/ω1)=0 во всех положениях.

Пятое слагаемое нужно записывать со знаком минус (угол Q,VB4/ω1 =180ْ , cos180ْ =-1); оно не равно нулю в те моменты времени, когда пуансон выдавливает заготовку, следовательно, формула (3) примет вид:

Мст= -[G2·(VB2/ω1)·cos(G2,VB2/ω1)+G3·(VB2/ω1)·cos(G3,VB2/ω1)+G5· ·(VE/ω1)·cos(G5,VE/ω1)-Q·(VB4/ω1)] , (4)

Значения углов между вектором i-ого усилия и вектором скорости i-ой точки приведены в таблице 3.

Таблица 3. Значения углов между вектором 1-ого усилия и вектором 1-ой точки.

№ положения 1 2 3 4 5 6 7 8 9 10 11 12 1
φ, рад 0 π/6 π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6
G2,VB2/ω1 180 128 104 90 77 52 0 46 69,5 90 110 132 180
G3,VB2/ω1 180 128 104 90 77 52 0 46 69,5 90 110 132 180
G5,VE/ω1 VE=0 79 84,5 90 98,5 102 VE=0 78 82 90 97 101 VE=0

Проведём расчёт Мст для каждого из выбранных положений механизма: