Из полюса P3, перпендикулярно отрезку О1А откладываем в выбранном масштабе вектор VА линейной скорости точки А, для этого воспользуемся формулой
lvi =V/μv , (1)
где V – скорость точки (м/с), μv – масштаб вектора скорости ((м/с)/мм).
V=μv*lvi
На плане скоростей вектору VА соответствует вектор а. Величина вектора VА будет одинакова для всех положений механизма и равна:
VА=ω1*l1=1рад*0,05м=0,05 (м/с).
На плане скоростей из полюса P3 отложим вектор а длиной:
а=VА/μv=0,05/0,0007=71,5 мм.
Далее для определения скорости точки С воспользуемся векторным равенством:
VС=VА+VСА , (2)
где VС – абсолютная скорость точки С, вектор, который перпендикулярен кулисе 5, VА– линейная скорость точки А (известная и по величине и по направлению), VСА – вектор скорости точки С, принадлежащей кулисе 5, в относительном вращательном движении шатуна 2 вокруг полюса А.Вектор скорости VСА перпендикулярен отрезку СА. Для построения вектораVС, которому на плане скоростей соответствует вектор с, через конец вектора а проведём прямую, перпендикулярную отрезку АС, на ней будет расположен векторVСА,которому на плане скоростей соответствует вектор са. Далее из полюса P3 проводим прямую, параллельную вектору скорости точки С (перпендикулярно О2С). Пересечение этих двух прямых задаст оба искомых вектора, модули которых будут равняться:
VС=μv*с=0,0007*67=0,0469 (м/с) , VСА=μv*са=0,0007*43=0,0301 (м/с).
Теперь зная скорость VСА, можно найти угловую скорость звена АС (шатуна 2):
ω2=VСА/l2=0,0301/0,6=0,05 (рад/с).
Зная ω2, найдём скорость точки В2 с помощью выражения
VB2=VА+VB2А , (3)
где VB2 – абсолютная скорость точки В2, VА – линейная скорость точки А, VB2А – скорость точки В2 в относительном движении.
Вектор скорости VB2А перпендикулярен отрезку АС. Так как направление вектора
VB2А перпендикулярно отрезку АС, а его модуль равен
VB2А=ω2*lАВ=0,05*0,3=0,015
(м/с), то необходимо из конца вектора а на плане скоростей отложить отрезок длиной b2a=VB2А/μv=0,015/0,0007=21,4 (мм) (вектору VB2А на плане скоростей соответствует вектор b2a) и соединить его конец с полюсом P3. Полученный вектор b2 является вектором скорости точки В2 - VB2, модуль которого равен:
VB2=μv*b2=0,0007*65=0,0455 (м/с).
Скорость точки Е можно определить по принадлежности кулисе 5, которая совершает возвратно-вращательное движение:
VЕ=ω5*lО2Е , (4)
Угловую скорость кулисы 5 найдём из выражения:
ω5=VС/lО2С=0,0469/0,21=0,22 (рад/с) ,
следовательно, VЕ=0,22*0,105=0,0234 (м/с). На плане скоростей вектору VЕ будет соответствовать вектор е, длина которого равна: е=VЕ/μv=0,0234/0,0007=33,45 (мм). Вектор е сонаправлен с вектором с.
Для определения скорости точки В4 воспользуемся векторным уравнением:
VB4=VB2+VB4B2 , (5)
где VB4 – абсолютная скорость точки В4 (векторы скоростей всех точек , принадлежащих пуансону 4, совпадают, так как это звено совершает поступательное движение), VB2 – скорость точки В2 (полюса), VB4B2 – скорость точки В4 в поступательном движении относительно точки В2.
В соответствии с данным уравнением через конец вектора b2 проведём параллельно направляющей В2В4 вертикальную прямую, а из полюса P3 – горизонтальную, параллельно штанге. Пересечение этих прямых задаёт векторы абсолютнойb4 (VB4) и относительной b4b2 (VB4B2) скоростей.
Значение скоростей равны:
VB4=μv*b4=0,0007*63=0,0441 (м/с) ,
VB4B2= μv*b4b2=0,0007*14=0,01 (м/с).
Аналогично построим планы скоростей для всех остальных положений механизма 1…12 (Рисунок 4…9). Все найденные значения относительных угловых и относительных линейных скоростей представлены в Таблице 2. Изменение относительных линейных и угловых скоростей представлены в виде графиков на Рисунках 10, 11.
Таблица 2. Значения кинематических передаточных функций механизма в зависимости от угла поворота кривошипа.
№ положения | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 |
φ, рад | 0 | π/6 | π/3 | π/2 | 2π/3 | 5π/6 | π | 7π/6 | 4π/3 | 3π/2 | 9π/3 | 11π/6 | 2π |
VА/ω1, м | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 |
VB2/ω1, м | 0,025 | 0,032 | 0,046 | 0,05 | 0,043 | 0,031 | 0,025 | 0,037 | 0,045 | 0,05 | 0,046 | 0,036 | 0,025 |
VС/ω1, м | 0 | 0,024 | 0,047 | 0,05 | 0,041 | 0,022 | 0 | 0,027 | 0,041 | 0,05 | 0,044 | 0,028 | 0 |
VЕ/ω1, м | 0 | 0,012 | 0,023 | 0,025 | 0,02 | 0,011 | 0 | 0,014 | 0,021 | 0,025 | 0,022 | 0,014 | 0 |
VB4/ω1, м | 0 | 0,025 | 0,044 | 0,05 | 0,042 | 0,024 | 0 | 0,028 | 0,042 | 0,05 | 0,043 | 0,027 | 0 |
ω2/ω1 | 0,083 | 0,082 | 0,05 | 0 | 0,051 | 0,079 | 0,083 | 0,068 | 0,035 | 0 | 0,035 | 0,062 | 0,083 |
ω5/ω1 | 0 | 0,115 | 0,22 | 0,238 | 0,193 | 0,107 | 0 | 0,129 | 0,197 | 0,238 | 0,21 | 0,133 | 0 |
Рисунок 10. Зависимости относительных линейных скоростей характерных точек механизма от угла поворота кривошипа.
ряд 1 - VА/ω1
ряд 2 - VB2/ω1
ряд 3 - VС/ω1
ряд 4 - VЕ/ω1
ряд 5 - VB4/ω1
Рисунок 11. Зависимости относительных угловых скоростей звеньев механизма от угла поворота кривошипа
ряд 1 - ω2/ω1
ряд 2 – ω5/ω1
СИЛОВОЙ АНАЛИЗ МЕХАНИЗМА
Анализ нагруженности реального механизма представляет собой довольно сложную задачу. Для упрощения её решения в механизме с одной степенью свободы совокупность всех звеньев и усилий заменяют динамической моделью.
Динамическая модель представляет собой одно звено (звено приведения) с переменными инерционными характеристиками, находящиеся в равновесии под действием момента движущих сил, приложенного со стороны привода, и момента сил сопротивления, определяемого силами полезных и вредных сопротивлений. Так как природа этих усилий различна, то их целесообразно разделить на усилия, независимые от времени – силы статического сопротивления и усилия, связанные с переменностью движения звеньев – силы динамического сопротивления. Соответственно, момент движущих сил, приложенный к кривошипу, определяется двумя составляющими:
Мдв=Мст+Мдин , (1)
где Мдв – момент движущих сил;
Мст – момент движущих сил, предназначенный для преодоления сил статического сопротивления (статический момент);
Мдин – момент движущих сил, предназначенный для преодоления сил динамического сопротивления (динамический момент).
Используя теорему мощностей, можно записать формулу для расчёта статического момента, предназначенного для преодоления сил статического сопротивления:
где Fi – сила статического сопротивления, приложенная в i-ой точке механизма;
Vi – линейная скорость i-ой точки механизма;
ω1- угловая скорость кривошипа 1;
Fi^(Vi/ω1) – угол между вектором i-ой силы и вектором скорости точки её приложения;
n – число сил сопротивления статического характера.
Статический момент, предназначенный для преодоления сил статического сопротивления вычисляется по формуле:
Мст= -[G2·(VB2/ω1)·cos(G2,VB2/ω1)+G3·(VB2/ω1)·cos(G3,VB2/ω1)+G4· ·(VB4/ω1)·cos(G4,VB4/ω1)+G5·(VE/ω1)·cos(G5,VE/ω1)+Q·(VB4/ω1) ·cos(Q,VB4/ω1)] , (3)
Третье слагаемое равно нулю, т.к. угол G4,VB4/ω1 равен 90ْ или 270ْ в зависимости от положения пуансона, следовательно, cos(G4,VB4/ω1)=0 во всех положениях.
Пятое слагаемое нужно записывать со знаком минус (угол Q,VB4/ω1 =180ْ , cos180ْ =-1); оно не равно нулю в те моменты времени, когда пуансон выдавливает заготовку, следовательно, формула (3) примет вид:
Мст= -[G2·(VB2/ω1)·cos(G2,VB2/ω1)+G3·(VB2/ω1)·cos(G3,VB2/ω1)+G5· ·(VE/ω1)·cos(G5,VE/ω1)-Q·(VB4/ω1)] , (4)
Значения углов между вектором i-ого усилия и вектором скорости i-ой точки приведены в таблице 3.
Таблица 3. Значения углов между вектором 1-ого усилия и вектором 1-ой точки.
№ положения | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 |
φ, рад | 0 | π/6 | π/3 | π/2 | 2π/3 | 5π/6 | π | 7π/6 | 4π/3 | 3π/2 | 5π/3 | 11π/6 | 2π |
G2,VB2/ω1 | 180 | 128 | 104 | 90 | 77 | 52 | 0 | 46 | 69,5 | 90 | 110 | 132 | 180 |
G3,VB2/ω1 | 180 | 128 | 104 | 90 | 77 | 52 | 0 | 46 | 69,5 | 90 | 110 | 132 | 180 |
G5,VE/ω1 | VE=0 | 79 | 84,5 | 90 | 98,5 | 102 | VE=0 | 78 | 82 | 90 | 97 | 101 | VE=0 |
Проведём расчёт Мст для каждого из выбранных положений механизма: