Смекни!
smekni.com

Проектирование привода пресс-автомата с плавающим ползуном (стр. 4 из 8)

I´пр21=

=
=
0,535 (кг·м²/рад);

I´пр22=

=
=-
0,008 (кг·м²/рад);

I´пр23=

=
=-
0,241 (кг·м²/рад);

I´пр24=

=
=-
0,573 (кг·м²/рад);

I´пр25=

=
=-
0,802 (кг·м²/рад);

I´пр26=

=
=-
0,844 (кг·м²/рад);

I´пр27=

=
=-
0,646 (кг·м²/рад);

По результатам вычислений I´пр(φ) строим график зависимости первой производной Iпр от угла поворота кривошипа. Значения I´пр(φ) в выбранных положениях (в таблицу занесены только основные положения) приведены в Таблице 4. Экстремумы функции в точках 8, 22 смещены в положения 4, 10, соответственно.

По формуле 6 рассчитаем момент движущих сил для преодоления сил динамического сопротивления во всех выбранных положениях механизма:

Мдин=107,3113·dIпр/dφ;

Мдин1=107,3113·0=0 (н·м);

Мдин2=107,3113·0,5=53,656 (н·м);

Мдин3=107,3113·0,982=105,38 (н·м);

Мдин4=107,3113·(-0,08)=-8,585 (н·м);

Мдин5=107,3113·(-0,76)=-81,557 (н·м);

Мдин6=107,3113·(-0,85)=-91,215 (н·м);

Мдин7=107,3113·(-0,05)=-5,366 (н·м);

Мдин8=107,3113·0,814=87,351 (н·м);

Мдин9=107,3113·0,646=69,323 (н·м);

Мдин10=107,3113·(-0,01)=-1,073 (н·м);

Мдин11=107,3113·(-0,57)=-61,167 (н·м);

Мдин12=107,3113·(-0,84)=-90,142 (н·м).

Полученные значения Мдин приведены в Таблице 4.

График зависимости Мдин(φ) показан на Рисунке 13.

Рисунок 12. Зависимости приведённого момента инерции Iпр и его первой производной I´пр от угла поворота кривошипа.

РАСЧЁТ КПД МЕХАНИЗМА

Момент движущих сил Мдв, в соответствии с зависимостью (1), был определён в предположении, что кинематические пары механизма идеальны.

Влияние сил трения учитывают с помощью коэффициента полезного действия η. При последовательном соединении кинематических пар их общий КПД определяется следующим выражением:

η=η1·η2·……·ηк , где к-число кинематических пар.

При параллельном соединении кинематических пар КПД определяется как среднее арифметическое КПД отдельных пар, при условии, что поток мощности распределяется равномерно между кинематическими парами:

η=(η12+…+ηк)/к , где к-число кинематических пар.

Суммарный КПД для нашего механизма (Рисунок 14) равен:

η= [(ηсс)/2]·ηс·ηк·ηпн2·ηпн4·ηк·[(ηсс)/2]= ηс·ηс·ηк·ηпн2·ηпн4·ηк·ηс=

= η3с· η2к·ηпн2·ηпн4 , (11)

где ηс=0,98 – КПД подшипника скольжения;

ηк=0,99 – КПД подшипника качения;

ηпн2=0,86 – КПД кинематической пары «ползун по направляющей»;

ηпн4=0,86 – КПД кинематической пары «пуансон по направляющей»;

Т.к. сила, определяющая в направляющих потери на трение, была учтена явным образом при подсчёте статического момента, то в формулу вычисления КПД она не входит.

η=(0,98)3·(0,99)2·0,86·0,86=0,68.

РАСЧЁТ ДВИЖУЩЕГО МОМЕНТА М(Φ)

По формуле (1) мы определяем момент движущих сил, считая, что кинематические пары идеальны. Однако силы трения присутствуют всегда, и их обычно учитывают с помощью коэффициента полезного действия – КПД.

Выражение для суммарного момента движущих сил М с учётом потерь на трение примет вид:

М=k·(Мст+Мдин) , (12)

гдеk– коэффициент, учитывающий присутствие сил трения в кинематических парах, равный: k, если (Мдв<0) – соответствуетработе привода в режиме генератора (когда привод играет роль тормоза);

k=1/η , если (Мдв>0) – соответствует работе привода в режиме двигателя.

Используя данные Таблицы 4, рассчитаем суммарный момент движущих сил М для всех выбранных положений механизма:

М∑1=Мдв1/η=82,5/0,68=121,32 (н·м);

М∑2=Мдв2/η=115,2/0,68=169,41 (н·м);

М∑3=Мдв3/η=138,8/0,68=204,12 (н·м);

М∑4=Мдв4/η=78,91/0,68=116,04 (н·м);

М∑5=Мдв5/η=123,6/0,68=181,76 (н·м);

М∑6=Мдв6·η=-151·0,68=-102,68 (н·м);

М∑7=Мдв7·η=-87,9·0,68=-59,77 (н·м);

М∑8=Мдв8·η=-1,85·0,68=-1,26 (н·м);

М∑9=Мдв9/η=12,92/0,68=19 (н·м);

М∑10=Мдв10·η=-1,07·0,68=-0,73 (н·м);

М∑11=Мдв11·η=-13,3·0,68=-9,04 (н·м);

М∑12=Мдв12·η=-14,6·0,68=-9,93 (н·м);

М∑13=Мдв13/η=82,5/0,68=121,32 (н·м);

Полученные данные приведены в Таблице 4.

Зависимость М(φ) представлена на Рисунке 13.

Таблица 4. Результаты расчёта момента движущих сил и его составляющих.

№ положения 1 2 3 4 5 6 7 8 9 10 11 12 1
φ, рад 0 π/6 π/3 π/2 2π/3 5π/6 π 7π/6 4π/3 3π/2 5π/3 11π/6
Мст, н•м 82,5 61,58 33,41 87,5 205,2 -59,6 -82,5 -89,2 -56,4 0 47,9 75,48 82,5
Q , кН 0 0 0 1,75 5,54 0 0 0 0 0 0 0 0
Iпр, кг•м² 0,263 0,491 1,037 1,225 0,907 0,457 0,263 0,613 0,959 1,223 1,01 0,579 0,263
I´пр, кг•м²/рад 0 0,5 0,982 -0,08 -0,76 -0,85 -0,05 0,814 0,646 -0,01 -0,57 -0,84 0
Мдин, н•м 0 53,66 105,4 -8,59 -81,6 -91,2 -5,37 87,35 69,32 -1,07 -61,2 -90,1 0
Мдв, н•м 82,5 115,2 138,8 78,91 123,6 -151 -87,9 -1,85 12,92 -1,07 -13,3 -14,6 82,5
М, н•м 121,3 169,4 204,1 116 181,8 -103 -59,8 -1,26 19 -0,73 -9,04 -9,93 121,3

Рисунок 13. Изменение суммарного момента движущих сил и его составляющих от угла поворота кривошипа.

ВЫБОР РЕДУКТОРА (*)

Для выбора редуктора необходимо определить передаточное число редуктора, характер нагрузки, число оборотов быстроходного вала редуктора и расчётный момент Мрасч, который определяется по формуле:

Мрасч=k1·k2·Мн , (13)

где k1=1 (т.к. nдв≤1500 об/мин) – коэффициент, который отражает влияние повышенной частоты вращения вала электродвигателя; k2коэффициент,отражающий влияние характера нагрузки; Мн – такой постоянный по величине момент, который совершает за один технологический цикл ту же работу, что и реальный суммарный момент М(φ). Формула для определения номинального момента имеет вид:

Мн=

·∫ М(φ)dφ , (14)

Для определения Мнподсчитаем площадь под графиком суммарного момента М(φ) (Рисунок 13), которая равна S=498,9 (н·м/с) и затем найдём номинальный момент Мн по формуле (14): Мн=

·498,9=79,4 (н·м). По графику суммарного момента М(φ) (Рисунок 13) определим характер нагрузки – сильные толчки. Следовательно, коэффициент k2=2,8. По формуле (13) найдём Мрасч:

Мрасч=1·2,8·79,4=222,32 (н·м).

Найдём передаточное отношение зубчатой передачи:

i=nдв/n1=480/140=3,4 ,

где nдв – частота вращения вала двигателя;

n1 – число оборотов кривошипа.

По расчётному моменту Мрасч и пердаточному числуiиз каталога [3] выбираем мотор-редуктор цилиндрический одноступенчатый МЦ-100. Допускаемый крутящий момент T на выходном валу равен 230 н·м.

Для выбранного редуктора найдём передаточное число iф=3,57, и определим погрешность по передаточному числу δi и по допускаемому крутящему моменту δТ:

δi=(iф-i)/i=[(3,57-3,4)/3,4]·100%=5%;

δТ=(T-Мрасч)/Мрасч=[(230-222,32)/222,32]·100%=3,45%.

Параметры редуктора приведены в Таблице 5.

Характеристики подшипника качения приведены в Таблице 6.

Схема подшипника качения показана на Рисунке 14.

Таблица 5. Значение эксплуатационных и конструктивных параметров цилиндрического одноступенчатого мотор-редуктора МЦ-100 [3]

Обозначение Единицаизмерения Наименование параметра Значениепараметра
H1 мм высота редуктора 426
B1 мм ширина редуктора 305
L мм длина редуктора 675
aw мм межосевое расстояние 100
m мм нормальный модуль зубчатого зацепления 1,5
tk мм ширина венца зубчатого колеса 25
z1 - число зубьев шестерни 28
z2 - число зубьев колеса 100
iф - фактическое передаточное число редуктора 3,57
β град. угол наклона линии зуба 16˚15΄37˝
dТ мм посадочный диаметр хвостовой части тихоходного вала 40
dБ мм посадочный диаметр хвостовой части быстроходного вала -
- - номер подшипника на тихоходном валу редуктора 7308
- - материал и термообработка колеса и шестерни редуктора Ст. 40Х, поверхностная закалка
- - материал и термообработка тихоходного вала редуктора Ст. 40Х, улучшение

Таблица 6. Характеристики подшипника качения № 7308