I´пр21= = =0,535 (кг·м²/рад);
I´пр22= = =-0,008 (кг·м²/рад);
I´пр23= = =-0,241 (кг·м²/рад);
I´пр24= = =-0,573 (кг·м²/рад);
I´пр25= = =-0,802 (кг·м²/рад);
I´пр26= = =-0,844 (кг·м²/рад);
I´пр27= = =-0,646 (кг·м²/рад);
По результатам вычислений I´пр(φ) строим график зависимости первой производной Iпр от угла поворота кривошипа. Значения I´пр(φ) в выбранных положениях (в таблицу занесены только основные положения) приведены в Таблице 4. Экстремумы функции в точках 8, 22 смещены в положения 4, 10, соответственно.
По формуле 6 рассчитаем момент движущих сил для преодоления сил динамического сопротивления во всех выбранных положениях механизма:
Мдин=107,3113·dIпр/dφ;
Мдин1=107,3113·0=0 (н·м);
Мдин2=107,3113·0,5=53,656 (н·м);
Мдин3=107,3113·0,982=105,38 (н·м);
Мдин4=107,3113·(-0,08)=-8,585 (н·м);
Мдин5=107,3113·(-0,76)=-81,557 (н·м);
Мдин6=107,3113·(-0,85)=-91,215 (н·м);
Мдин7=107,3113·(-0,05)=-5,366 (н·м);
Мдин8=107,3113·0,814=87,351 (н·м);
Мдин9=107,3113·0,646=69,323 (н·м);
Мдин10=107,3113·(-0,01)=-1,073 (н·м);
Мдин11=107,3113·(-0,57)=-61,167 (н·м);
Мдин12=107,3113·(-0,84)=-90,142 (н·м).
Полученные значения Мдин приведены в Таблице 4.
График зависимости Мдин(φ) показан на Рисунке 13.
Рисунок 12. Зависимости приведённого момента инерции Iпр и его первой производной I´пр от угла поворота кривошипа.
Момент движущих сил Мдв, в соответствии с зависимостью (1), был определён в предположении, что кинематические пары механизма идеальны.
Влияние сил трения учитывают с помощью коэффициента полезного действия η. При последовательном соединении кинематических пар их общий КПД определяется следующим выражением:
η=η1·η2·……·ηк , где к-число кинематических пар.
При параллельном соединении кинематических пар КПД определяется как среднее арифметическое КПД отдельных пар, при условии, что поток мощности распределяется равномерно между кинематическими парами:
η=(η1+η2+…+ηк)/к , где к-число кинематических пар.
Суммарный КПД для нашего механизма (Рисунок 14) равен:
η∑= [(ηс+ηс)/2]·ηс·ηк·ηпн2·ηпн4·ηк·[(ηс+ηс)/2]= ηс·ηс·ηк·ηпн2·ηпн4·ηк·ηс=
= η3с· η2к·ηпн2·ηпн4 , (11)
где ηс=0,98 – КПД подшипника скольжения;
ηк=0,99 – КПД подшипника качения;
ηпн2=0,86 – КПД кинематической пары «ползун по направляющей»;
ηпн4=0,86 – КПД кинематической пары «пуансон по направляющей»;
Т.к. сила, определяющая в направляющих потери на трение, была учтена явным образом при подсчёте статического момента, то в формулу вычисления КПД она не входит.
η∑=(0,98)3·(0,99)2·0,86·0,86=0,68.
По формуле (1) мы определяем момент движущих сил, считая, что кинематические пары идеальны. Однако силы трения присутствуют всегда, и их обычно учитывают с помощью коэффициента полезного действия – КПД.
Выражение для суммарного момента движущих сил М∑ с учётом потерь на трение примет вид:
М∑=k·(Мст+Мдин) , (12)
гдеk– коэффициент, учитывающий присутствие сил трения в кинематических парах, равный: k=η , если (Мдв<0) – соответствуетработе привода в режиме генератора (когда привод играет роль тормоза);
k=1/η , если (Мдв>0) – соответствует работе привода в режиме двигателя.
Используя данные Таблицы 4, рассчитаем суммарный момент движущих сил М∑ для всех выбранных положений механизма:
М∑1=Мдв1/η=82,5/0,68=121,32 (н·м);
М∑2=Мдв2/η=115,2/0,68=169,41 (н·м);
М∑3=Мдв3/η=138,8/0,68=204,12 (н·м);
М∑4=Мдв4/η=78,91/0,68=116,04 (н·м);
М∑5=Мдв5/η=123,6/0,68=181,76 (н·м);
М∑6=Мдв6·η=-151·0,68=-102,68 (н·м);
М∑7=Мдв7·η=-87,9·0,68=-59,77 (н·м);
М∑8=Мдв8·η=-1,85·0,68=-1,26 (н·м);
М∑9=Мдв9/η=12,92/0,68=19 (н·м);
М∑10=Мдв10·η=-1,07·0,68=-0,73 (н·м);
М∑11=Мдв11·η=-13,3·0,68=-9,04 (н·м);
М∑12=Мдв12·η=-14,6·0,68=-9,93 (н·м);
М∑13=Мдв13/η=82,5/0,68=121,32 (н·м);
Полученные данные приведены в Таблице 4.
Зависимость М∑(φ) представлена на Рисунке 13.
Таблица 4. Результаты расчёта момента движущих сил и его составляющих.
№ положения | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 |
φ, рад | 0 | π/6 | π/3 | π/2 | 2π/3 | 5π/6 | π | 7π/6 | 4π/3 | 3π/2 | 5π/3 | 11π/6 | 2π |
Мст, н•м | 82,5 | 61,58 | 33,41 | 87,5 | 205,2 | -59,6 | -82,5 | -89,2 | -56,4 | 0 | 47,9 | 75,48 | 82,5 |
Q , кН | 0 | 0 | 0 | 1,75 | 5,54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Iпр, кг•м² | 0,263 | 0,491 | 1,037 | 1,225 | 0,907 | 0,457 | 0,263 | 0,613 | 0,959 | 1,223 | 1,01 | 0,579 | 0,263 |
I´пр, кг•м²/рад | 0 | 0,5 | 0,982 | -0,08 | -0,76 | -0,85 | -0,05 | 0,814 | 0,646 | -0,01 | -0,57 | -0,84 | 0 |
Мдин, н•м | 0 | 53,66 | 105,4 | -8,59 | -81,6 | -91,2 | -5,37 | 87,35 | 69,32 | -1,07 | -61,2 | -90,1 | 0 |
Мдв, н•м | 82,5 | 115,2 | 138,8 | 78,91 | 123,6 | -151 | -87,9 | -1,85 | 12,92 | -1,07 | -13,3 | -14,6 | 82,5 |
М∑, н•м | 121,3 | 169,4 | 204,1 | 116 | 181,8 | -103 | -59,8 | -1,26 | 19 | -0,73 | -9,04 | -9,93 | 121,3 |
Рисунок 13. Изменение суммарного момента движущих сил и его составляющих от угла поворота кривошипа.
Для выбора редуктора необходимо определить передаточное число редуктора, характер нагрузки, число оборотов быстроходного вала редуктора и расчётный момент Мрасч, который определяется по формуле:
Мрасч=k1·k2·Мн , (13)
где k1=1 (т.к. nдв≤1500 об/мин) – коэффициент, который отражает влияние повышенной частоты вращения вала электродвигателя; k2 – коэффициент,отражающий влияние характера нагрузки; Мн – такой постоянный по величине момент, который совершает за один технологический цикл ту же работу, что и реальный суммарный момент М∑(φ). Формула для определения номинального момента имеет вид:
Мн=
·∫ М∑(φ)dφ , (14)Для определения Мнподсчитаем площадь под графиком суммарного момента М∑(φ) (Рисунок 13), которая равна S=498,9 (н·м/с) и затем найдём номинальный момент Мн по формуле (14): Мн=
·498,9=79,4 (н·м). По графику суммарного момента М∑(φ) (Рисунок 13) определим характер нагрузки – сильные толчки. Следовательно, коэффициент k2=2,8. По формуле (13) найдём Мрасч:Мрасч=1·2,8·79,4=222,32 (н·м).
Найдём передаточное отношение зубчатой передачи:
i=nдв/n1=480/140=3,4 ,
где nдв – частота вращения вала двигателя;
n1 – число оборотов кривошипа.
По расчётному моменту Мрасч и пердаточному числуiиз каталога [3] выбираем мотор-редуктор цилиндрический одноступенчатый МЦ-100. Допускаемый крутящий момент T на выходном валу равен 230 н·м.
Для выбранного редуктора найдём передаточное число iф=3,57, и определим погрешность по передаточному числу δi и по допускаемому крутящему моменту δТ:
δi=(iф-i)/i=[(3,57-3,4)/3,4]·100%=5%;
δТ=(T-Мрасч)/Мрасч=[(230-222,32)/222,32]·100%=3,45%.
Параметры редуктора приведены в Таблице 5.
Характеристики подшипника качения приведены в Таблице 6.
Схема подшипника качения показана на Рисунке 14.
Таблица 5. Значение эксплуатационных и конструктивных параметров цилиндрического одноступенчатого мотор-редуктора МЦ-100 [3]
Обозначение | Единицаизмерения | Наименование параметра | Значениепараметра |
H1 | мм | высота редуктора | 426 |
B1 | мм | ширина редуктора | 305 |
L | мм | длина редуктора | 675 |
aw | мм | межосевое расстояние | 100 |
m | мм | нормальный модуль зубчатого зацепления | 1,5 |
tk | мм | ширина венца зубчатого колеса | 25 |
z1 | - | число зубьев шестерни | 28 |
z2 | - | число зубьев колеса | 100 |
iф | - | фактическое передаточное число редуктора | 3,57 |
β | град. | угол наклона линии зуба | 16˚15΄37˝ |
dТ | мм | посадочный диаметр хвостовой части тихоходного вала | 40 |
dБ | мм | посадочный диаметр хвостовой части быстроходного вала | - |
- | - | номер подшипника на тихоходном валу редуктора | 7308 |
- | - | материал и термообработка колеса и шестерни редуктора | Ст. 40Х, поверхностная закалка |
- | - | материал и термообработка тихоходного вала редуктора | Ст. 40Х, улучшение |
Таблица 6. Характеристики подшипника качения № 7308