Смекни!
smekni.com

Проектирование привода силовой установки (стр. 2 из 3)

расчетное контактное напряжение: 486,32 МПа.

К условию статической прочности по контактным напряжениям:

допускаемое предельное контактное напряжение: 1624,00 МПа,

расчетное предельное контактное напряжение: 615,15 МПа.

К условию изгибной выносливости:

допускаемые напряжения изгиба зубьев:

шестерни 236,88 МПа, колеса 219,96 МПа

расчетные напряжения изгиба зубьев:

шестерни 91,77 МПа, колеса 79,80 МПа.

К условию статической прочности по напряжением изгиба:

предельные допускаемые напряжения изгиба зубьев:

шестерни 464,00 МПа, колеса 464,00 МПа.

предельные расчетные напряжения изгиба зубьев:

шестерни 146,83 МПа, колеса 127,68 МПа.

Контрольные параметры, определенные по начальному диаметру шестерни, модулю зацепления, углу наклона зубьев и передаточному числу:

межосевое расстояние: 110,000000

число зубьев шестерни, рассчитанное на ЭВМ: 18,00000

число зубьев колеса, рассчитанное на ЭВМ: 90,00000

Фамилия, имя пользователя ЭВМ - Бергевич.

Статус пользователя ЭВМ - Студент.

Структурное подразделение - Учебная группа ЭП-06СПО.

РАСЧЕТ НА ПРОЧНОСТЬ ПРОВЕРОЧНЫЙ ПЕРЕДАЧ ЗУБЧАТЫХ ЦИЛИНДРИЧЕСКИХ С НЕПРЯМЫМИ ЗУБЬЯМИ

23.04.2008

ИСХОДНЫЕ ДАННЫЕ

Материал зубчатых колес - Сталь 45Х.

Термообработка: шестерни - Улучшение НВ 280, колеса - Улучшение НВ 260.

Пределы текучести материала: шестерни 580 МПа, колеса 580 МПа.

Пределы прочности материала: шестерни 850 МПа, колеса 850 МПа.

Ресурс 7200 часов.

Частота вращения шестерни 191 об/мин.

Передаточное число 3.

Базовое число циклов перемен напряжений:

шестерни 80000000 циклов, колеса 15000000 циклов.

Угол наклона зуба 10,9424989068669 градусов.

Крутящий момент на шестерне: 140 ньютон-метров.

Коэффициенты нагрузки: КНВ = 1,05; КFB = 1,1.

Начальный диаметр шестерни: 62,32 мм. Модуль: 2 мм.

Рабочая ширина зубчатого колеса: 62,32 мм.

Степень точности изготовления зубчатых венцов: 8.

Коэффициент кратковременных перегрузок: 1,6.

РЕЗУЛЬТАТЫ РАСЧЕТОВ

К условию контактной выносливости:

допускаемое контактное напряжение: 499,09 МПа,

расчетное контактное напряжение: 224,10 МПа.

К условию статической прочности по контактным напряжениям:

допускаемое предельное контактное напряжение: 1624,00 МПа,

расчетное предельное контактное напряжение: 283,46 МПа.

К условию изгибной выносливости:

допускаемые напряжения изгиба зубьев:

шестерни 236,88 МПа, колеса 219,96 МПа

расчетные напряжения изгиба зубьев:

шестерни 28,86 МПа, колеса 27,54 МПа.

К условию статической прочности по напряжением изгиба:

предельные допускаемые напряжения изгиба зубьев:

шестерни 464,00 МПа, колеса 464,00 МПа.

предельные расчетные напряжения изгиба зубьев:

шестерни 46,18 МПа, колеса 44,06 МПа.

Контрольные параметры, определенные по начальному диаметру шестерни, модулю зацепления, углу наклона зубьев и передаточному числу:

межосевое расстояние: 124,640000

число зубьев шестерни, рассчитанное на ЭВМ: 30,59345

число зубьев колеса, рассчитанное на ЭВМ: 91,78036

Фамилия, имя пользователя ЭВМ - Бергевич.

Статус пользователя ЭВМ - Студент.

Структурное подразделение - Учебная группа ЭП-06СПО.


Основные размеры корпуса и крышки редуктора

Толщина стенок:

δ = 0,025α + 1 = 0,025 · 100 + 1 = 3,5 мм

δ1 = 0,02α + 1 = 0,02 · 100 + 1 = 3 мм

Принимаем: δ = δ1 = 8 мм

Толщина поясов стыка: b = b1 = 1,5δ = 1,5 · 8 = 12 мм

Толщина бобышки крепления на раму:

p = 2,35δ = 2,35 · 8 = 18 мм

Диаметры болтов:

d1 = 0,03α + 12 = 0,03 · 100 + 12 = 15 мм - М16

d2 = 0,75d1 = 0,75 · 16 = 12 мм - М12

d3 = 0,6d1 = 0,6 · 16 = 9,6 мм - М10

d4 = 0,5d1 = 0,5 · 16 = 8 мм - М8

Предварительный расчет на прочность валов, подбор подшипников

Для изготовления валов назначаем сталь 45 и при этом учитываем, что в дальнейшем может появиться необходимость замены марки стали. В частности, для вал-шестерни будет назначен тот же материал, что и для зубчатого венца.

Проектировочный расчет диаметра вала ведем по напряжениям, возникающим при кручении:

dв

,

где МК - крутящий момент, [τ] = 20-35 МПа - допускаемые касательные напряжения (значения занижены в порядке компенсации неучета в этом расчете напряжений изгиба).

Диаметр тихоходного вала:

dII = ≥

= 0,027 м = 27 мм.

Принимаем диаметр посадки шестерни тихоходной ступени dII = 27 мм. Для посадки подшипника назначаем d = 30 мм.

Для опор тихоходного вала выбираем подшипник шариковый радиально-упорный 46306 по ГОСТ 831-75. Его размеры: d = 30 мм, D = 72 мм, В = 19 мм.

Динамическая грузоподъемность подшипника: С = 32,6 кН.

Статическая грузоподъемность Со = 18,3 кН.

Диаметр быстроходного вала:

dI = ≥

= 0,019 м = 19 мм.

Быстроходный вал соединяется муфтой с валом электродвигателя, диаметр которого dД = 27 мм. Значения диаметров, соединяемых валов не должны отличаться более, чем на 25%. Поэтому сначала находят ориентировочно dM ≈ 0,75dД. Окончательно принимаем диаметр посадки муфты на быстроходный вал d = 20 мм.

Для посадки подшипника назначаем d = 25 мм. Сравнивая значения этих диаметров с размерами зубчатого венца шестерни, принимаем решение о конструировании быстроходного вала в виде вал-шестерни.

Для его опор выберем подшипник: шариковый радиально-упорный 46305 по ГОСТ 831-75. Его размеры: d = 25 мм, D = 62 мм, В = 17 мм.

Динамическая грузоподъемность подшипника: С = 26,9 кН.

Статическая грузоподъемность Со = 14,6 кН.

Уточненный силовой расчет редуктора

Определим усилия в зубчатых зацеплениях.

Быстроходная ступень:

окружное: Ft1 = Ft2 = 2MI / d1 = 2 · 30/0,0367 = 1634,88 H

радиальное: Fr1 = Fr2 = Ft1 · tgα / cosβ = 1634,88 · tg 20°/cos 10,94° = 607,2 H

осевое: Fα1 = Fα2 = Ft1 · tgβ = 1634,88 · tg 10,94° = 316 H

Тихоходная ступень:

окружное: Ft3 = Ft4 = 2MII / d3 = 2 · 140/0,0623 = 4423,38 H

радиальное: Fr3 = Fr4 = Ft3 · tgα / cosβ = 4423,38 · tg 20°/cos 10,94° = 1641,6 H

осевое: Fα3 = Fα4 = Ft3 · tgβ = 4423,38 · tg 10,94° = 855 H

Расчет реакций опор редуктора

Значения реакций опор валов необходимы для проверки работоспособности валов и подшипников. Наибольшее опасение по работоспособности вызывает тихоходный вал редуктора и его опоры, так как там наблюдаются наибольшие нагрузки - силы, возникающие в зацеплении.

Из эскизной компоновки редуктора: l1 = 36,5 мм.


Реакции опор:

в плоскости xz: Rx1 = Rx2 = Ft / 2 = 1635/2 = 817,5 Н;

в плоскости yz: Ry1= (1/2l1) (Fr1l1 + Fa1d1/2) = (1/2·36,5) (607·36,5 + 316·36,7/2) = 384 H;

Ry2= (1/2l1) (Fr1l1 - Fa1d1/2) = (1/2·36,5) (607·36,5 - 316·36,7/2) = 223 H.

Проверка: Ry1 + Ry2 - Fr1 = 384 + 223 - 607 = 0.

Суммарные реакции:

Pr1 =

=
= 903 H;

Pr2 =

=
= 847 H.

Проверяем подшипники по более нагруженной опоре 1.

Эквивалентная нагрузка:

Рэ = (XVPr1 + YPa1) KбKT,


в которой радиальная нагрузка Pr1 = 903 H; осевая нагрузка Pa1 = Fa1 =316 H; V = 1 -

вращается внутреннее кольцо; коэффициент безопасности для приводов ленточных конвейеров Kб = 1; КТ = 1.

Отношение Fa1/Со = 316/14600 = 0,022; этой величине соответствует е = 0,21.

Отношение

Рa1/Pr1 = 316/903 = 0,35 > е; Х = 0,45; Y = 1,97.

Рэ = (0,45·903 + 1,97· 316) = 1029 H.

Расчетная долговечность, млн. об:

L = (C/Pэ) 3 = (26900/1029) 3 = 17865 млн. об.

Расчетная долговечность, ч:

Lh = L·106/60n = 17865·106/60·955 = 31·104 ч,

что больше установленных ГОСТ 16162-85. Подшипник выбран, верно.

Рассмотрим тихоходный вал редуктора.

Из эскизной компоновки редуктора: l2 = 37,5 мм, l3 = 51 мм.

Реакции опор:

в плоскости xz:

Rx3 = (1/2l2) (Ft3l3 + Ft2l2) = (1/2·37,5) (4423·51 + 1635·37,5) = 3690 Н;

Rx4 = (1/2l2) [ (Ft2l2 - Ft3 (2l2 + l3)] = (1/2·37,5) (1635·37,5 - 4423·126) = - 6478 Н;

Проверка: Rx3 + Rx4 + Ft3 - Ft2 = 3690 - 6478 + 4423 - 1635 = 0.


в плоскости yz:

Ry3= (1/2l2) (Fr2l2 - Fa2d2/2 + Fr3l3 - Fa3d3/2) = (1/2·37,5) (607·37,5 - 316·63,3/2 + 1642·51 -

855·62,3/2) = 908 H;

Ry4= (1/2l2) [ (-Fr2l2 - Fa2d2/2 + Fr3 (2l2 + l3) - Fa3d3/2) = (1/2·37,5) (-607·37,5 - 316·63,3/2 + 1642·126 - 855·62,3/2) = 1943 H;

Проверка: Ry3 - Ry4 - Fr2 + Fr3 = 908 - 1943 - 607 + 1642 = 0.

Суммарные реакции:

Pr3 =

=
= 3800 H; Pr4 =
=
= 6507 H.

Проверяем подшипники по более нагруженной опоре 4.