Оглавление
Задание
Введение
1. Описание назначения и устройства проектируемого привода.
2. Выбор электродвигателя и кинематический расчет.
3. Выбор материалов шестерен и колес и определение допускаемых напряжений.
4. Расчет второй ступени редуктора.
5. Расчет первой ступени редуктора.
6. Основные размеры корпуса и крышки редуктора.
7. Проектный расчет валов, подбор подшипников.
8. Расчет тихоходного вала и расчет подшипников для него.
9. Расчет промежуточного вала и расчет подшипников для него.
10. Расчет быстроходного вала и расчет подшипников для него.
11. Расчет тяговой звездочки.
12. Расчет приводного вала и расчет подшипников для него.
13. Смазка
14. Проверка прочности шпоночных соединений.
15. Выбор муфт
16. Сборка редуктора.
Список использованной литературы
Приложение: спецификация редуктора.
Вариант 12
Спроектировать привод цепного сборочного конвейера, состоящий из электродвигателя фланцевого (1), муфты (2), редуктора коническо-цилиндрического (3), муфты (4), звездочек тяговых (5). Цепи по ГОСТ 588-64, тип ПВР. В одной из муфт предусмотреть предохранительное устройство.
Техническая характеристика привода:
Окружное усилие на звездочке Р, кг: 260.
Скорость цепи конвейера V, м/с: 1,5.
Число зубьев звездочки z: 9.
Шаг цепи t, мм: 100.
Ресурс tΣ, ч: 48000.
Введение
Редуктор является неотъемлемой составной частью современного оборудования. Разнообразие требований, предъявляемых к редукторам, предопределяет широкий ассортимент их типов, типоразмеров, конструктивных исполнений, передаточных отношений и схем сборки.
При выполнении проекта используются математические модели, базирующиеся на теоретических и экспериментальных исследованиях, относящихся к объемной и контактной прочности, материаловедению, теплотехнике, гидравлике, теории упругости, строительной механике. Широко используются сведения из курсов сопротивления материалов, теоретической механики, машиностроительного черчения и т. д. Все это способствует развитию самостоятельности и творческого подхода к поставленным проблемам.
При выборе типа редуктора для привода рабочего органа (устройства) необходимо учитывать множество факторов, важнейшими из которых являются: значение и характер изменения нагрузки, требуемая долговечность, надежность, КПД, масса и габаритные размеры, требования к уровню шума, стоимость изделия, эксплуатационные расходы.
Из всех видов передач зубчатые передачи имеют наименьшие габариты, массу, стоимость и потери на трение. Коэффициент потерь одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 0,01. Зубчатые передачи в сравнении с другими механическими передачами обладают большой надежностью в работе, постоянством передаточного отношения из-за отсутствия проскальзывания, возможностью применения в широком диапазоне скоростей и передаточных отношений. Эти свойства обеспечили большое распространение зубчатых передач; они применяются для мощностей, начиная от ничтожно малых (в приборах) до измеряемых десятками тысяч киловатт.
К недостаткам зубчатых передач могут быть отнесены требования высокой точности изготовления и шум при работе со значительными скоростями.
Одной из целей выполненного проекта является развитие инженерного мышления, в том числе умение использовать предшествующий опыт, моделировать используя аналоги. Для курсового проекта предпочтительны объекты, которые не только хорошо распространены и имеют большое практическое значение, но и не подвержены в обозримом будущем моральному старению.
Существуют различные типы механических передач: цилиндрические и конические, с прямыми зубьями и косозубые, гипоидные, червячные, глобоидные, одно- и многопоточные и т. д. Это рождает вопрос о выборе наиболее рационального варианта передачи. При выборе типа передачи руководствуются показателями, среди которых основными являются КПД, габаритные размеры, масса, плавность работы и вибронагруженность, технологические требования, предпочитаемое количество изделий.
При выборе типов передач, вида зацепления, механических характеристик материалов необходимо учитывать, что затраты на материалы составляют значительную часть стоимости изделия: в редукторах общего назначения - 85%, в дорожных машинах - 75%, в автомобилях - 10% и т. д.
Поиск путей снижения массы проектируемых объектов является важнейшей предпосылкой дальнейшего прогресса, необходимым условием сбережения природных ресурсов. Большая часть вырабатываемой в настоящее время энергии приходится на механические передачи, поэтому их КПД в известной степени определяет эксплуатационные расходы.
Наиболее полно требования снижения массы и габаритных размеров удовлетворяет привод с использованием электродвигателя и редуктора с внешним зацеплением.
1. Описание назначения и устройства проектируемого привода
Проектируемый привод предназначен для передачи вращательного движения от электродвигателя к приводному валу цепного сборочного конвейера. В состав данного привода входят:
1.Электродвигатель фланцевый.
2.Муфта.
3.Редуктор коническо-цилиндрический.
4.Муфта.
5.Звездочки тяговые.
Рассмотрим более подробно составные части привода. Вращательное движение от электродвигателя через муфту передается на быстроходный вал редуктора. Кроме передачи вращательного движения муфта также компенсирует несоосность вала двигателя и быстроходного вала редуктора. В качестве электродвигателя широкое применение получили асинхронные двигатели. В этих двигателях значительное изменение нагрузки вызывает несущественное изменение частоты вращения ротора.
Коническо-цилиндрический редуктор передает вращательное движение от двигателя к приводному валу, при этом изменяя угловую скорость и крутящий момент по величине и направлению. Изменение направления связано с наличием в редукторе конической передачи.
Еще одна муфта передает вращательное движение от тихоходного вала редуктора к приводному валу цепного сборочного конвейера. Кроме передачи вращательного движения муфта также компенсирует несоосность тихоходного вала редуктора и приводного вала конвейера. Предусмотрим в этой муфте предохранительное устройство для предотвращения поломки привода при заклинивании исполнительного элемента.
Звездочки тяговые установлены на приводном валу и приводят в движение цепи по ГОСТ 588-64, тип ПВР.
2. Выбор электродвигателя и кинематический расчет
Изобразим кинематическую схему привода на рис. 1. Расчет ведем по [1].
Рис.1
Потребляемая мощность привода:
Рвых = Ft · V = 2,6 · 103 · 1,5 = 3,9 кВт.
Требуемая мощность двигателя:
Рэ потр = Рвых/ ηобщ , где:
ηобщ = ηред · ηм2 · ηп - общий КПД привода.
ηред – КПД редуктора.
ηред = ηцп · ηкп · ηп3
По таблице 1.1 из [1]:
ηцп = 0,96…0,98; принимаем ηцп = 0,97 – КПД закрытой цилиндрической передачи;
ηкп = 0,95…0,97; принимаем ηкп = 0,96 – КПД закрытой конической передачи;
ηп = 0,99 – КПД пары подшипников качения.
ηм = 0,98 – КПД муфты.
ηред = 0,97 · 0,96 · 0,993 = 0,9
ηобщ = 0,9 · 0,982 · 0,99 = 0,86
Рэ потр = 3,9/ 0,86 = 4,53 кВт.
Частота вращения вала электродвигателя:
nэ = nвых · U1 · U2 , где:
U1 – передаточное число конической передачи;
U2 – передаточное число цилиндрической передачи.
По таблице 1.2 из [1] примем рекомендуемые значения передаточных чисел:
U1 = 2;
U2 = 3.
nвых = 60v / (πDзв) = 60 · 1,5 / (3,14 · 0, 287) = 99,9 об/мин
Dзв = zpзв / (π · 103) = 9 · 100 / (3,14 · 103) = 0,287 м
nэ = 99,9 · 2 · 3 = 599,4 об/мин
По таблице 24.8 [1] выбираем электродвигатель 132М8: Р = 5,5 кВт;
n = 720 об/мин.
Общее передаточное число привода:
Uобщ = Uред = n/ nвых = 720/99,9 = 7,2
По таблице 1.3 [1]:
U1 = Uред / U2 = 7,2 / 2,95 = 2,44
U2 = 1,1
= 1,1 = 2,95Частота вращения валов:
n1 = n = 720 об/мин;
n2 = n1 / U1 = 720 / 2,44 = 295,1 об/мин;
n3 = nвых = 99,9 об/мин.
Угловые скорости валов:
ω1 = πn1 / 30 = 3,14 · 720 / 30 = 75,4 рад/с;
ω2 = πn2 / 30 = 3,14 · 295,1 / 30 = 30,9 рад/с;
ω3= ωвых = πn3 / 30 = 3,14 · 99,9 / 30 = 10,5 рад/с.
Вращающие моменты на валах:
Твых = Т3 = FtDзв / 2 = 2,6 · 103 · 0,287 / 2 = 373 Н·м;
Т2 = Т3 / (ηцп · U2) = 373 / (0,97 · 2,95) = 130,4 Н·м;
Т1 = Т2 / (ηкп · U1) = 130,4 / (0,96 · 2,44) = 55,7 Н·м.
Мощности на валах:
Р1 = Р · ηм · ηп = 5,5 · 0,98 · 0,99 = 5,34 кВт;
Р2 = Р1 · ηкп · ηп = 5,34 · 0,96 · 0,99 = 5,08 кВт;
Р3 = Р2 · ηцп · ηп = 5,08 · 0,97 · 0,99 = 4,88 кВт;
Рвых = Р4 · ηм · ηп = 4,88 · 0,98 · 0,99 = 4,73 кВт.
3. Выбор материалов шестерен и колес и определение допускаемых напряжений
По таблице 2.1 [1] выбираем материалы колеса и шестерни.
Материал колес – сталь 45; термообработка – улучшение: 235…262 НВ2;
248,5 НВСР2; σв = 780 МПа; σт = 540 МПа; τ = 335 МПа.
Материал шестерен – сталь 45; термообработка – улучшение: 269…302 НВ1;
285,5 НВСР1; σв = 890 МПа; σт = 650 МПа; τ = 380 МПа.
Допускаемые контактные напряжения и напряжения изгиба для шестерни и колеса принимаем по таблице 2.2 [1]: