Смекни!
smekni.com

Проектирование привода электролебёдки (редуктор) (стр. 6 из 7)

Определение эквивалентной динамической нагрузки подшипников

Эквивалентная динамическая нагрузка, Н:

при
(64)

при
, (65)

где Кб – коэффициент безопасности, находим по таблице 9.4 [4,с.133] Кб=1,4;

КТ – температурный коэффициент, при рабочей температуре до 100° С находим по таблице 9.5 [4,с.135] КТ = 1,0;

Х – коэффициент радиальной нагрузки, находим по таблице 9.1 [4,с.129] Х=0,56;

V– коэффициент вращения, для подшипников с вращающемся внутренним кольцом V = 1.

Быстроходный вал.

Определим для каждого подшипника соотношение

и сравним полученное значение с е.

Значение коэффициентов е и Y для радиальных шарикоподшипников определим из соотношения Ra/Cor по таблице 9.2 [4,с.131].

Получаем е =0,2, Y=2,15.

Найдем эквивалентную динамическую нагрузку.

Н

Н

Промежуточный вал.

Определим для каждого подшипника соотношение

и сравним полученное значение с е.

Получаем е =0,2, Y=2,1.

Найдем эквивалентную динамическую нагрузку.

Н

Н

Тихоходный вал.

Определим для каждого подшипника соотношение

и сравним полученное значение с е.

Получаем е =0,175, Y=2,6.

Найдем эквивалентную динамическую нагрузку.

Н

Н

Определение расчетной динамической грузоподъемности

Быстроходный вал

Н

18898,5≤ 25500

Промежуточный вал

Н

35465,3≤ 52700

Тихоходный вал.

Н

21363,8≤ 92300

Определение базовой долговечности

Быстроходный вал.

часов

91460,5³ 37230

Промежуточный вал.

часов

122156³ 37230

Тихоходный вал.

часов

3002342³ 37230

Определение пригодности подшипников

Условие Сrр ≤ Сr и L10h³Lhвыполняется, следовательно, предварительно выбранные подшипники пригодны для конструирования подшипниковых узлов.

Вывод: в данном пункте был произведен расчет редуктора. Определены основные габаритные размеры каждой передачи. Рассчитаны на прочность валы каждой ступени.

5. СМАЗЫВАНИЕ РЕДУКТОРА

Для редукторов общего назначения применяют непрерывное смазывание жидким маслом картерным непроточным способом (окунанием). Этот способ применяют для зубчатых передач при окружных скоростях

от 0,3 до 12, 5 м/с.

Выбор сорта масла зависит от значения расчетного контактного напряжения в зубьях sн и фактической окружной скорости колес n. По таблице 10.29 [4,с. 241] выбираем сорт масла И-Г-С-68.

Для двухступенчатых редукторов при смазывании окунанием объем масляной ванны определяют из расчета 0,4…0,8 л масла на 1 кВт передаваемой мощности. Для смазывания проектируемого редуктора достаточно 4 л масла.

В цилиндрических редукторах при окунании в масляную ванну колеса:

, (66)

где m – модуль зацепления;

2,5 мм ≤ hм ≤ 0,25×393,6 = 98,4мм

Контроль уровня масла производится жезловым маслоуказателем.

Для слива масла в корпусе редуктора предусматриваем сливное отверстие, закрываемое пробкой М16´1,5.

При длительной работе в связи с нагревом масла и воздуха повышается давление внутри корпуса, что приводит к просачиванию масла через уплотнения и стыки. Чтобы избежать этого, устанавливаем отдушины в верхней точке редуктора.

Так как окружная скорость n < 2 м/с, то для смазки подшипников будем использовать пластичный материал консталин жировой УТ -1.

6. КОНСТРУИРОВАНИЕ КОРПУСА И ДЕТАЛЕЙ РЕДУКТОРА

Сконструируем колесо первой ступени

Толщина обода.

(67)

мм

Наружный диаметр ступицы.

(68)

мм

Длина ступицы.

lст=(1,0…1,5)d (69)

lст=1,5·53=79,5 мм

Толщина ступицы.

dст=0,3d

dст=0,3×53=15,9 мм

Толщина диска.

(70)

мм.

Сконструируем колесо второй ступени

Толщина обода.

мм

Наружный диаметр ступицы.

мм

Длина ступицы.

lст=1,5·75=112,5 мм

Толщина ступицы.

dст=0,3×75=22,5 мм

Толщина диска.

мм.

Расчёт толщины стенок корпуса и рёбер жёсткости:

(71)

Принимаем значение толщины стенки корпуса редуктора δ = 6 мм

Определим основные размеры редуктора:

1. Диаметр болтов для крепления фундаментального фланца редуктора к раме: d1= M10; d0=11мм;

Расстояние между болтами: lв=(12…15)d1 =15·10 = 150 мм;

Ширина фланца К=3d=3·10=30мм;

Толщина фланца b=1,5δ=1,5·10=15мм; С=1,2·10=12мм.

2. Диаметр стержней болтов для соединения фланца крышки и основания корпуса на продольных длинных сторонах редуктора, d2 = M8; d0=9мм;

Расстояние между болтами lв= (12…15)d =15·8 =120 мм;

Ширина фланца К1= 2,7·8 = 21,6мм;

Толщина фланца b=1,5δ=1,5·8=12мм; С1= 0,5·8 = 4 мм.

3. В проектируемом редукторе используем врезные крышки. По таблице К18 [4,с.396] выбираем крышки Dк1= 72 мм, Dк2= 100 мм, Dк3= 140 мм.

4. Для осмотра внутреннего состояния редуктора в крышке устанавливается люк.

5. Диаметр стержней винтов со шлицом под отвёртку для крепления крышки смотрового люка к фланцу, d5=M6;

Ширина фланца К=2,7·6=16,2мм;

Расстояние между винтами lв=(12…15)d=13·6=78мм;

С=1,2·6=7,2мм; b2=1,5·6=9мм.

6. Для фиксирования корпуса редуктора относительно крышки редуктора применяем два штифта, диаметр штифта dшт=6 мм.

7. Для удобства монтажа в крышке редуктора изготавливаются проушины диаметром d =3∙d = 3∙6 =18 мм.

7. ПОДБОР И ПРОВЕРОЧНЫЙ РАСЧЕТ МУФТ

Основной характеристикой для выбора муфты является номинальный вращающий момент Т, Нм, установлены стандартом. Муфты выбирают по большему диаметру концов соединяемых валов и расчетному моменту Тр, который должен быть в пределах номинального:

, (72)

где Кр – коэффициент режима нагрузки, таблице 10.26[4,с. 237] Кр= 2;

Т1 –вращающий момент на быстроходном валу редуктора, Нм.

Нм

Выбираем муфту упругую втулочно-пальцевую с полумуфтой под тормоз.

Муфта 125-28-I.1-28-II.2-У3 ГОСТ 21424-75.

Проверим выбранную муфту.

(73)

где

длина пальца,
33 мм;

диаметр установки пальцев,
78 мм;

z – число пальцев, 4;

dП – диаметр пальца, dП =14 мм.