где
длина втулки, 28 мм.Муфта удовлетворяет условиям выбора.
Для соединения тихоходного вала и вала барабана выбираем зубчатую муфту МЗ 56-I-56-II.2-У3 по ГОСТ 5006-83.
Выбранную муфту проверим смятие зубьев.
(75)где К – коэффициент, учитывающий режим работы, К=1,1;
b – длина зуба, b =10 мм;
d – диаметр делительной окружности, d =z∙m.
z – число зубьев, z=50;
m– модуль зацепления, m=2 мм;
– допустимое удельное давление, =15 МПа. МПаМуфта удовлетворяет условиям выбора.
8. РАСЧЕТ ШПОНОЧНЫХ СОЕДИНЕНИЙ
Призматические шпонки: две тихоходного вала и одну на быстроходном валу - проверяем на смятие.
Под полумуфту быстроходного вала устанавливаем шпонку:
d= 28 мм, b = 8 мм, h = 7 мм, t1 = 4 мм, t2 = 3,3 мм, l = 22 мм.
Под колесо промежуточного вала устанавливаем шпонку:
d= 53 мм, b = 16 мм, h = 10 мм, t1 = 6 мм, t2 = 4,3 мм, l = 70 мм.
Под колесо тихоходного вала устанавливаем шпонку:
d= 75 мм, b = 20 мм, h = 12 мм, t1 = 7,5 мм, t2 = 4,9 мм, l = 100 мм.
Под полумуфту тихоходного вала устанавливаем шпонку:
d= 56 мм, b = 16 мм, h = 10 мм, t1 = 6 мм, t2 = 4,3 мм, l = 63 мм.
Условие прочности:
, (76)где Ft – окружная сила на шестерне или колесе, Н;
Асм = (0,94×h – t1)×lр – площадь смятия, мм2;
lр =l- b – рабочая длина шпонки со скругленными торцами, мм;
где l – полная длина шпонки; b, h, t1 – стандартные размеры;
[sсж] - допускаемое напряжение на смятие, [sсж] = 190Н/мм2.
Вычислим напряжение смятия для шпонки под полумуфтой.
lр = 22 – 8 = 14мм
Асм = (0,94×7 – 4)×14 = 36,12 мм2
Н/мм2
Вычислим напряжение смятия для шпонки под колесом на промежуточном валу.
lр = 70 – 16 = 54мм
Асм = (0,94×10 – 6)×54 = 183,6 мм2
Н/мм2
Вычислим напряжение смятия для шпонки под колесом на тихоходном валу.
lр = 100 – 20 = 80мм
Асм = (0,94×12 – 7,5)×80 = 302,4 мм2
Н/мм2
Вычислим напряжение смятия для шпонки под полумуфту.
lр = 63 – 16 = 47мм
Асм = (0,94×10 – 6)×47 = 159,8 мм2
Н/мм2Все шпонки выдерживают напряжение смятия.
9. ТЕХНИЧЕСКИЙ УРОВЕНЬ РЕДУКТОРА
Технический уровень оценивают количественным параметром, отражающим соотношение затраченных средств и полученного результата, который представляет собой его нагрузочную способность, в качестве характеристики которой можно принять вращающий момент Т2, Нм, на его тихоходном валу. Объективной мерой затраченных средств является масса редуктора m, кг.
Определение массы редуктора
Для цилиндрического редуктора:
, (77)где j - коэффициента заполнения, определяется по графику [4,с. 263]
в зависимости от межосевого расстояния аwj = 0,34;
r= 7300 кг/м3 – плотность чугуна;
V – условный объем редуктора.
, (78)где L – наибольшая длина редуктора;
В – наибольшая ширина;
Н – наибольшая высота редуктора.
мм3 кгОпределение критерия технического уровня редуктора
Критерий технического уровня определяем путем расчета относительной массы:
(79) кг/(Нм)По таблице12.1 [4,с. 261] определяем технический уровень редуктора как низкий.
ВЫВОД
В результате выполнения курсовой работы был рассчитан двухступенчатый цилиндрический редуктор с передаточными отношениями u1 =4, u1 =4,5 модулями зацепления m1 = 1,5, m2 = 2,5, крутящим моментом на тихоходном валу Тт= 748,54 Н·м и на быстроходном валу - Тб.=46 Н·м.
Редуктор имеет низкий технический уровень.
В ходе выполнения курсовой работы были получены основы знаний по конструированию деталей машин, оформления конструкторской документации и разработки типовых узлов механических систем на базе современных стандартов.
ЛИТЕРАТУРА
1. Дунаев П. Ф., Леликов О. П. Конструирование узлов и деталей машин. Учебное пособие для вузов. М.: Высш. шк.,1985.
2. Дунаев П. Ф., Леликов О. П. Детали машин. Курсовое проектирование. Учебное пособие. М.: Высш.шк. ,1990.
3. Кудрявцев В. Н. Курсовое проектирование деталей машин. Учебное пособие для вузов. Л.: Машиностроение1984.
4. Шейнблит А.Е. Курсовое проектирование по деталям машин. М.: Высшая школа, 1991.