Смекни!
smekni.com

Проектирование привода электролебёдки (редуктор) (стр. 1 из 7)

СОДЕРЖАНИЕ

1. Техническое задание2. Энерго-кинематический расчет привода3. Расчет редуктора4. Подбор и проверочный расчет подшипников5. Смазывание редуктора6. Конструирование корпуса и деталей редуктора7. Подбор и проверочный расчет муфт8. Расчет шпоночных соединений9. Технический уровень редуктораВыводЛитература

1. ТЕХНИЧЕСКОЕ ЗАДАНИЕ

Спроектировать привод электролебедки по схеме, представленной на рисунке 1.

Исходные данные для варианта 2:

- Тяговое усилие каната F = 10 кН;

- Скорость каната u= 0,42м/с;

- Диаметр барабана D= 150 мм;

- Срок службы редуктора L = 5 лет.

2. ЭНЕРГО-КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПРИВОДА. ПОДБОР ЭЛЕКТРОДВИГАТЕЛЯ

2.1. Выбор электродвигателя

, (1)

где h - кпд привода;

hм - кпд муфты, hм.=0,98;

hп.к..- кпд подшипников качения, hп.к.= (0,99 ¸ 0,995);

hз.п.- кпд закрытой передачи, hз.п.= (0,96 ¸ 0,98).

h = 0,992·0,982·0,982=0,904

, (2)

где Р - расчётная мощность электродвигателя, кВт;

Рр.м. - мощность рабочей машины, кВт.

, (3)

где F - тяговое усилие каната, кН;

u - скорость каната, м/с.

кВт

кВт

По таблице [4, с.384] выбираем подходящий электродвигатель.


Таблица 1.

Типы двигателей

Мощность, кВт Тип двигателя Номинальная частота, об/мин
5,5 4А100L2У3 2880
4А112М4У3 1445
4А132S6У3 965
4А132М8У3 720

2.2. Определение общего передаточного числа привода и его разбивка по ступеням

u=u1·u2 , (4)

где u – общее передаточное число привода;

u1 – передаточное число первой ступени;

u2 – передаточное число второй ступени.

Определим передаточное число привода для всех приемлемых вариантов типа двигателя.

(5)

где nэ.д. – частота вращения вала электродвигателя, об/мин;

nр.м – частота вращения рабочей машины, об/мин.

(6)

об/мин

Из стандартного ряда передаточных чисел первой ступени u1 = 4.

Из стандартного ряда передаточных чисел второй ступени u2 = 4,5.

2.3. Определение частоты вращения и моментов на валах

(7)

(8)

где nт – частота вращения тихоходного вала редуктора, об/мин;

nб – частота вращения промежуточного вала редуктора, об/мин;

об/мин

об/мин

Проверка отклонения частоты вращения рабочей машины от расчетной.

< 5% (9)

(10)

где ωэ.д. – угловая скорость вала электродвигателя, с-1.

с-1

с-1

с-1

P= T·ω, (11)

где Pэл – мощность электродвигателя, Вт;

Tэд – крутящийся момент на валу электродвигателя, Н·м.

Н·м

Т1эд·u1

,(12)

Т21·u2

, (13)

где Т1 – крутящийся момент промежуточного вала редуктора, Н·м;

Т2 – крутящийся момент тихоходного вала редуктора, Н·м.

Тп=46·4∙0,99∙0,98∙0,98=174,95 Н·м

Тт=174,95·4,5∙0,99∙0,98∙0,98=748,54 Н·м

Таблица 2.

Параметры привода

Крутящий момент Т, Н×м Частота n, об/мин Угловая скорость w, с-1 Передаточное число u
Двигатель 4А250М6У3 46 965 101
Редуктор, промежуточной вал 174,95 241,25 25,25 4
Рабочий тихоходный вал 748,54 53,61 5,61 4,5

Вывод: в данном пункте был произведен энерго-кинематический расчет привода. Выбран асинхронный двигатель. Рассчитаны передаточные числа каждой ступени. Определены крутящие моменты, угловые скорости и частоты вращения на валах ступеней.

3. РАСЧЁТ РЕДУКТОРА

3.1. Расчет первой ступени цилиндрического редуктора

3.1.1. Выбор материала и определение допускаемых напряжений

По таблице 3.2 [4,с.50] выбираем марку стали: 45 термообработка –нормализация. Принимаем твёрдость шестерни НВ1=207, твёрдость колеса НВ2=195.

Допускаемое контактное напряжение:

н]= (1,8· НВср+67)×КHL, (14)

где [σн]- допускаемое контактное напряжение, Н/мм2;

КHL – коэффициент долговечности, КHL =1;

НВср – твердость детали.

н.]1=1,8· 207+67= 439,6 Н/мм2

н.]2=1,8· 195+67= 418 Н/мм2

За расчётное допускаемое напряжение принимаем меньшее из двух допускаемых контактных напряжений [σн]=418 Н/мм2.

Допускаемое напряжение изгиба определяется:

F]= 1,03· НВ×КFL , (15)

где [σF] - допускаемое напряжение изгиба, Н/мм2;

KFL – коэффициент долговечности, KFL=1;

[σ F]1=1,03·207 = 213,21 Н/мм2

[σ F]2=1,03·195 = 200,85 Н/мм2

3.1.2. Определение значения межосевого расстояния

, (16)

где Kнβ – коэффициент неравномерности нагрузки по длине зуба, Kнβ = 1;

Ka – вспомогательный коэффициент: для косозубых передач Ka=43;

ψa – коэффициент ширины венца колеса, для несимметричных редукторов, ψa=0,2….0,25, принимаем ψa= 0,2;

мм

Полученное значение межосевого расстояния округляем до ближайшего по ГОСТ 6636-69 aω=150 мм.

3.1.3. Определение рабочей ширины венца колеса и шестерни

(17)

(18)

где

- рабочая ширина венца шестерни, мм;

- рабочая ширина венца колеса, мм.


3.1.4. Определение модуля передачи

, (19)

где m – модуль передачи, мм;

Кm – вспомогательный коэффициент, для косозубой передачи Кm = 5,8;

d2 – делительный диаметр колеса, мм.

(20)

мм

Полученное значение модуля округляет до ближайшего значения из стандартного ряда по ГОСТ 9563-60 m= 1,5 мм.

3.1.5. Определение суммарного числа зубьев и угла наклона зуба

, (21)

Принимаем минимальный угол наклона зуба βmin равным 10°.

(22)

где zΣ – суммарное число зубьев;

z1,z2 – числа зубьев шестерни и колеса;

β – действительное значение угла наклона зуба.

3.1.6. Определение числа зубьев шестерни и колеса

(23)