Смекни!
smekni.com

Разработка АСР температуры обжига цементного клинкера с циклонным теплообменником (стр. 4 из 5)

Наибольшим запасом по устойчивости обладают системы, настроенные по критерию с минимальным временем регулирования и без перерегулирования. Когда требуется исключить влияние регулирующего воздействия данной системы на другие величины сложного объекта, целесообразно, чтобы переходный процесс имел апериодический характер.

Вторым этапом по выбору регулятора является определение типа (закона) регулятора. Существуют различные таблицы, графики, номограммы по выбору регулятора, зависящие от динамических свойств объекта, относительной нагрузки, характера ее изменения, заданных показателей качества регулирования.

Основные области применения линейных регуляторов определяются с учетом следующих рекомендаций:

И-регулятор со статическим ОР - при медленных изменениях возмущений и малом времени запаздывания (τ/То< 0,1);

П-регулятор со статическим и астатическим ОР - при любой инертности и времени запаздывания, определяемые соотношением τ/То ≤ 0,1;

ПИ-регулятор при любой инертности и времени запаздывания ОР, определяемом соотношением τ/То ≤ 1;

ПД и ПИД - регуляторы при условии τ/То ≤ 1 и малой колебательности переходных процессов.

Учитывая то, что передаточная функция у меня имеет вид:

,

и τ/То = 0,17 можно сделать вывод, что в нашем случае (контур регулирования температурного режима обжига цементного клинкера) подходящим является ПИ-регулятор. Если при дальнейших расчетах окажется, что ПИ-регулятор не удовлетворяет заданным условиям, нам необходимо выбрать более сложный (и следовательно, более дорогой) ПИД-регулятор, который имеет лучшие показатели регулирования.

3.1 Определение параметров настройки ПИ - регулятора

Для определения параметров настройки ПИ - регулятора используем пакет прикладных программ для построения нелинейных систем управления SignalConstant, который реализует метод динамической оптимизации. Этот инструмент, строго говоря, представляющий собой набор блоков, разработанных для использования с Simulink, автоматически настраивает параметры моделируемых систем, основываясь на определённых пользователем ограничениях на их временные характеристики.

Типовой сеанс работы в среде Simulink с Использованием возможностей и блоков SignalConstant состоит из ряда стадий, описанных ниже.

В среде Simulink создается модель исследуемой динамической системы (в общем случае нелинейной).

Входы блоков SignalConstantсоединяются с теми сигналами системы, на которые накладываются ограничения. Этими сигналами могут быть, например, выходы системы, их среднеквадратические отклонения и т.д.

В режиме командной строки МАТLAB задаются начальные значения параметров подлежащих оптимизации,

.

Двойным щелчком на пиктограмме SignalConstant данные блоки "раскрываются".

При помощи мыши нужным образом изменяются конфигурации и размеры областей ограничений для нужных сигналов системы.

Задаются неопределенные параметры системы, указываются их номинальные значения.

Процесс оптимизации системы инициализируется нажатием командой Start.

Рис.5. Структурная схема АСР, регулирования температурного режима обжига цементного клинкера с циклонным теплообменником, в Simulink.

Рис. 6. Окно настройки параметров переходного процесса.


Рис. 7. Окно настройки параметров, подлежащих оптимизации.

Рис. 8. Окно SignalConstant, процесс оптимизации параметров регулятора.

>> kp = 2.350

>> ki = 0.0160

4.Анализ динамических характеристик АСР при выбранном типе регулятора и найденных параметрах его настройки

Процесс оптимизации системы инициализируется нажатием командой Start.

Рис. 9. Структурно-математическая схема АСР, регулирования температурного режима обжига цементного клинкера с циклонным теплообменником, в Simulink.

Рис. 10. Переходная характеристика системы по возмущению.


Из графика переходного процесса видно, что:

а) время регулирования tрег=1360 с;

б) статическая ошибка - 0

г) максимальная амплитуда 0,17

г) перерегулирование - Inf

Для определения запасов устойчивости по амплитуде и по фазе необходимо построить логарифмические амплитудную и фазовую характеристики (ЛАХ и ЛФХ). Для этого необходимо разомкнуть систему и по виду разомкнутой системы судить об устойчивости замкнутой.

Рис. 11. Структурно-математическая схема АСР, регулирования температуры обжига цементного клинкера с разомкнутой обратной связью.

Рис. 12. ЛАХ и ЛФХ разомкнутой системы.


Из графика видно, что запас устойчивости по фазе - 106 градусов, система является устойчивой.

Рис. 13. АФЧХ разомкнутой системы

Из АФЧХ разомкнутой системы видно (рис.11), что годограф не охватывает точку с координатами (-1,j0) следовательно система устойчива в замкнутом состояние.

На основании полученных результатов можно сделать вывод, что регулятор и его параметры выбраны правильно и это обеспечивает требуемое качество регулирования.

5. Расчет одноконтурной цифровой АСР

Интенсивное развитие современных вычислительных средств привело к разработке и широкому использованию цифровых автоматических регуляторов и систем автоматического управления. Характерной их особенностью является квантование по времени и по уровню сигналов, поступающих в регулирующее устройство, обработка дискретной информации по запрограммированному алгоритму и преобразование квантованных регулирующих воздействий в кусочно-непрерывный сигнал для управления исполнительным механизмом.

Рис. 14. Структурная схема одноконтурной цифровой АСР

Рассчитаем параметры дискретного регулятора по имеющимся значениям непрерывного регулятора:

Кр = 2.35

Ти = 60.

Такт квантования возьмем То=0,01*Тоб=0,01*100=1.0

То=1с.

Уравнение, описывающее динамику дискретного ПИ-регулятора:

Xp (k) =Xp (k-1) +q0ΔX (k) - q1ΔX (k-1)


Где k = k*To- дискретный аргумент.

По методу трапеций:

q0 = Kp * (1 + То / (2·Ти) = 2.35 * (1 + 1/ (2 * 60)) = 2.37

q1 = - Kp * (1 - То / (2·Ти) = - 2.35 * (1 - 1/ (2 * 60)) = - 2.33

Разностное уравнение, описывающий дискретный ПИ-регулятор:

6. Выбор технических средств автоматизации

6.1 Датчик температуры

Рис. 15. Термоэлектрические преобразователи 01.02

В качестве датчика температуры используется термоэлектрический преобразователь КТНН 01.02., разработанный российской компанией ООО ПК "Тесей". Данный датчик наиболее подходит для данной АСР температуры обжига цементного клинкера, т.к была необходима термопара с диапазоном температур от 0 до 1250 ºС. Кроме того этот датчик намного дешевле своих аналогов.

Предназначены для измерения температуры жидких, газообразных, сыпучих сред, а также поверхностей.

При установке на технологическом оборудовании сложной геометрии и труднодоступных местах допускается изгибать термопреобразователи по длине для размещения рабочего спая в требуемой зоне измерения (вплоть до сворачивания в петлю или спираль). Термопреобразователи выдерживает один цикл изгиба на угол 180° вокруг цилиндра диаметром, равным пятикратному диаметру кабеля d.

Термопреобразователи КТНН 01.02 диаметром 3 или 4.5 мм рекомендуется использовать в качестве контрольных при использовании ТП серии 21. ХХ с дополнительным каналом для бездемонтажной калибровки.

Рабочий спай термопреобразователей модификации 01.01 организован внутри кабеля со стороны рабочего торца, который заглушается металлической пробкой. С другого торца термопреобразователи оснащены клеммными головками или термопарными разъемами для подключения в измерительную цепь.

Термопреобразователи модификации 01.02-010 с клеммной головкой могут использоваться как самостоятельно, так и в качестве термочувствительных элементов (ТЭхх) для термопреобразователей в защитных чехлах.

Для термопреобразователей с диаметром кабельной части 0.5-3 мм используются мини-разъемы, для диаметров 3-6 мм - клеммные головки или стандартные разъемы.

Максимальный наружный диаметр компенсационного провода для мини-разъема - 4 мм, для стандартного разъема - 8 мм.

6.2 Регулятор температуры

Рис. 16. Регулятор МИНИТЕРМ 300

В качестве регулятора температуры был выбран автоматический регулятор МИНИТЕРМ 300, разработанный российской компанией ЗАО ТПА "ПРОМПРИБОР СЕРВИС".

Микропроцессорные регуляторы МИНИТЕРМ 300 предназначены для регулирования различных технологических параметров, например, температуры, давления, разрежения, уровня жидкости, расхода и т.п.