Смекни!
smekni.com

Разработка динамической модели привода с фрикционным вариатором (стр. 3 из 3)

5.2 Представление динамической модели

в пространстве состояний

Динамическая модель, описанная дифференциальными уравнениями, может быть представлена в форме матричных уравнений (матрицы А, В, С, D) или представлена в виде передаточной функции. Так как модель имеет 4 степени свободы, то преобразование Лапласа необходимое для получения передаточной функции произвести достаточно трудно. Поэтому представим модель в форме матриц, используя для их расчета интерактивную систему MATLAB.

Дифференциальные уравнения динамической модели:

Преобразуем систему.

Представим модель в матричной форме:

Введем следующие обозначения:

Динамическая модель принимает вид:

Умножим обе части уравнения на обратную матрицу

:

Обратную матрицу

с помощью MATLAB:

L=[Is 0 0 0; 0 I1 0 0; 0 0 I2 0; 0 0 0 Ip];

inv(L)

ans =

0.7383 0 0 0

0 0.2131 0 0

0 0 0.0038 0

0 0 0 0.6171.

Умножим обратную матрицу

на матрицу
:

F=[-k1 k1 0 0; 0 -k1 k1 0; 0 k2 -k2 0; 0 0 k2 -k2];

ans =

-0.7000 0.7000 0 0

0 -0.7000 0.7000 0

0 0.7000 -0.7000 0

0 0 0.7000 -0.7000

ans=inv(L)*F

ans =

-0.5168 0.5168 0 0

0 -0.1491 0.1491 0

0 0.0027 -0.0027 0

0 0 0.4320 -0.4320

Умножим обратную матрицу

на матрицу
:

R=[-c1 c1 0 0;c1 -c1 0 0; 0 0 -c2 c2; 0 0 c2 -c2];

ans=R

-3163 3163 0 0

3163 -3163 0 0

0 0 -3500 3500

0 0 3500 -3500

ans=inv(L)*R

ans =

1.0e+003 *

-2.3352 2.3352 0 0

0.6739 -0.6739 0 0

0 0 -0.0134 0.0134

0 0 2.1598 -2.1598

Умножим обратную матрицу

на матрицу
:

К=[Mn; -(e-b)*Mn; -(b-e)*Mn; -Mo];

ans=K

22.2000

27.0840

-27.0840

-15.0000

ans=inv(L)*К

16.3898

5.7707

-0.1033

-9.2564

Матрицы А, В, С, D имеют вид:

Введем полученные матрицы в M-file MATLAB и получим передаточную функцию динамической модели, которая описывает реакцию модели на скачкообразное задающее воздействие (рис. 5.5, 5.6).

A=[0 0 0 0 1 0 0 0;

0 0 0 0 0 1 0 0;

0 0 0 0 0 0 1 0;

0 0 0 0 0 0 0 1;

-2335.2 2335.2 0 0 -0.5168 0.5168 0 0;

673.9 -673.9 0 0 0 -0.1491 0.1491 0;

0 0 13.4 13.4 0 0.0027 -0.0027 0;

0 0 2159.8 -2159.8 0 0 0.4320 -0.4320];

B=[0; 0; 0; 0; 16.3898; 5.7707; -0.1033; -9.2564];

C=[1 0]; D=[0].

Передаточная функция имеет вид:

W(s) = (-2.132e-014 s^7 + 16.39 s^6 + 6.586 s^5 + 3.275e004 s^4 - 2343 s^3- 6.166e006s^2 - 7.573e004 s + 1.407e008)/(s^8 + 1.101 s^7 + 5156 s^6 + 3080 s^5 + 6.401e006 s^4 + 6.915e005 s^3 - 1.742e008 s^2 - 2.015e007 s + 2.25e-007).

Рисунок 5.5 – Переходной процесс в динамической модели

Рисунок 5.6 – Амплитудно-фазо-частотная и фазо-частотная характеристики

Из анализа графиков видно, что колебания в модели возрастают и она не устойчива. Поэтому необходимо спроектировать регулятор (корректирующее звено) (рис. 5.7), чтобы динамическая модель имела затухающие колебания при переходном процессе и малое время успокоения (1-5 секунд) с перерегулированием не более 10-15%.

Рисунок 5.7 – Динамическая модель с модальным регулятором

5.4 Проектирование модального регулятора

Идея создания модального регулятора заключается в том, чтобы подобрать его коэффициенты так, чтобы полюса замкнутого контура регулирования оказались в заштрихованной области. Это обеспечит затухающие колебания при переходном процессе и малое время успокоения с перерегулированием не более 10-15% (рис. 5.7).

Рисунок 5.8 – Область расположения полюсов устойчивых систем

Для построения модального регулятора необходима проверка управляемости модели.

Проверку управляемости произведем с помощью критерия Калмана:

если ранг квадратной матрицы Ss(n,n)=[B A*B A2*B … An-1*B] равен порядку матрицы n, то модель, описываемая матрицами А, В, С, D, является управляемой. Порядок матрицы А динамической модели равен 8.

Ранг матрицы – максимальный размер квадратной матрицы, определитель которой не равен нулю.

Ранг матрицы можно определить с помощью функции rank в MATLAB:

Ss=ctrb(A,B);

rank(Ss);

ans=8.

Ранг матрицы А динамической модели равен порядку, значит модель управляема.

Методом подбора назначаем полюса для новой передаточной функции замкнутого контура. С помощью MATLAB можно найти коэффициенты модального регулятора и получить переходной процесс в динамической модели с регулятором (рис. 5.9).

p=[-7-0.2i -7+0.2i -5-0.5i -5+0.5i -5 -6 -17 -10];

k=place(A,B,p);

sysE=ss(A-B*k,B,C,D);

step(sysE)

Коэффициенты модального регулятора:

k=[-237.0116 237.0565 173.5746 -185.8740 8.6474 -8.5860 16.0462 14.2642].

Из анализа графика на рисунке 5.7 видно, что переходной процесс в системе заканчивается через 2,5 секунды без перерегулирования.

Рисунок 5.9 – Переходной процесс в динамической модели c регулятором

Заключение

В данной работе были изучены динамические процессы, возникающие в приводе с фрикционным вариатором. Выбраны исходные данные, приведен проектный расчет фрикционного вариатора, определены инерционные характеристики подвижных деталей и жесткости элементов привода.

Была составлена структурная схема объекта исследования, математическое описание и динамическая модель, позволяющие изучить возможное поведение системы при действии на неё единичной нагрузки.

Также приведен анализ динамических процессов в объекте во временной области и пространстве состояний. Спроектирован модальный регулятор, который обеспечивает завершение переходного процесса в динамической модели за 2,5 секунды.


Литература

1. Гузенков П.Г. Детали машин: Учеб. для вузов. – М.: Высш. шк., 1986. – 359 с.

2. Бакаев Н.А., Волошина О.Н. Основы проектирования фрикционных передач. – Издательство Ростовского университета, 1985. – 176 с.

3. Пронин Б.А., Ревков Г.А. Бесступенчатые клиноременные и фрикционные передачи. – М.: Машиностроение, 1980. – 320 с.

4. Комаров М.С. Динамика механизмов и машин. Машиностроение, М., 1969.

5. Иванов Е.А. Муфты приводов. Машгиз, М, 1959.