Смекни!
smekni.com

Разработка источников диффузионного легирования для производства кремниевых солнечных элементов (стр. 7 из 17)

3. Нелинейность зависимости количества диффузанта в осаждаемом слое от процентного содержания смеси.

4. Длительность процесса нанесения и сложность используемого оборудования для пиролитического разложения, обеспечивающего высокую чистоту процесса.

1.1.7.2. Источники, полученные осаждением пленок стекла из пленкообразующих растворов

Для создания силикатных пленок в сравнительно "мягких" условиях представляется перспективным применение пленкообразующих растворов, содержащих соединения, разлагающиеся при сравнительно низких температурах. Это могут быть продукты гидролитической поликонденсации таких кремнеорганических эфиров, как, например, этиловый или бутиловый эфир ортокремневой кислоты, либо таких соединений, как диметилэтоксихлорсилан, которые при гидролитической поликонденсации образуют силоксановые цепи, склонные образовывать полимеры. Если нанести подобный раствор на твердую поверхность, то после испарения растворителя на поверхности останется пленка. Последующая кратковременная термоокислительная деструкция при температурах 250 – 700°С превращает пленку в стекловидную.

Наиболее известным методом получения пленок SiO2 из пленкообразующих растворов является метод, когда в качестве исходных кремнийорганических соединений используются алкоксисиланы [13,14]. По своей химической структуре эти соединения представляют собой гидрид кремния Sigh4, в котором все атомы водорода замещены радикальными группами. Например, в тетраэтоксисилане (ТЭС) Si(OC2H5)4 эти группы имеют состав (OC2H5). Следует заметить, что тераэтоксисилан имеет несколько синонимов, наиболее распространенными являются: этилсиликат, этиловый эфир ортокремневой кислоты, тетраэтоксикремний, тетраэтилоксисилан, тетраэтилортосиликат, промышленное название – этилсиликат-40 (40 % SiO2) [15]. Другие этоксисиланы содержат одну-три группы (OC2H5), а остальные радикалы у кремния замещены какими-либо другими органическими группами. При нормальных условиях эти соединения представляют собой жидкости, пары которых разлагаются в диапазоне 600 – 900°С. Процесс получения пленок SiO2 осуществляется в три стадии: получение пленкообразующего раствора, нанесение пленки и ее термодеструкция. Рассмотрим его на примере использования в качестве исходного соединения тетраэтоксисилана Si(OC2H5)4 [14].

При получении пленкообразующего раствора вначале осуществляют гидролиз исходного соединения:

R R

׀ ׀

R – Si – R + 2H2O → HO – Si – OH + 2HR

׀ ׀

R R

(R – функциональная группа – OC2H5).

Далее, вводя катализатор (соляную кислоту), осуществляют реакцию поликонденсации гидроксильных групп с образованием силоксановых связей:

׀׀׀׀

– Si – OH + HO – Si – → – Si – O – Si – + H2O.

׀ ׀ ׀ ׀

В результате этой реакции раствор приобретает пленкообразующие свойства. В раствор могут вводиться растворитель (ацетон, этиловый спирт), а также легирующие элементы, например в виде азотнокислых солей.

Для нанесения этих пленкообразующих растворов на поверхности разработаны разные способы:

1. Погружение покрываемой пластины в пленкообразующий раствор. Способ наиболее экономичен. Толщина образующейся пленки зависит от многих факторов, среди них такие, как концеттрация раствора, скорость подъема пластины, угол наклона ее относительно поверхности раствора, вязкость раствора. Образование пленки сразу же и фиксируется изменением интерфененционной окраски. Особенностью этого способа является опускание уровня раствора (а не извлечение пластины из раствора).

2. Распыление или пульверизация пленкообразующего раствора. Этот способ менее экономичен вследствие большого расхода жидкости, требует тонкого распыления до едва заметного тумана. Раствор обычно напыляют на нагретую до 100 – 400°С пластину. Модификация этого метода состоит в том, что покрываемая пластина вращается, а на нее последовательно направляют сопла, распыляющие пленкообразующие растворы.

3. Нанесение пленкообразующего раствора пипеткой на выпуклую или плоскую поверхность, которая вращается с фиксированной скоростью. В этом случае расход раствора незначителен. Пленка формируется сразу же по мере испарения легколетучих растворителей еще в период центробежного разбрасывания раствора в результате вращательного движения, сообщенного пластине. Затем может быть применена термообработка пленки.

Наиболее применимым в технологии изготовления СЭ на сегодняшнее время является метод центрифугирования, когда пипеткой на полупроводниковые пластины наносится раствор заданного состава.

1.1.7.2.1. Приготовление пленкообразующих растворов, их нанесение и термодеструкция

Технология приготовления пленкообразующих растворов, их нанесение и термодеструкция играет исключительно важную роль в процессе создания диффузионных слоев данным методом. Наиболее полно этот вопрос освещен в [14 ].

Например, описывается получение пленкообразующих растворов путем проведения гидролиза этилового эфира ортокремневой кислоты в две стадии. Процесс осуществляют путем смешивания 130 мл этилового эфира ортокремневой кислоты (ТЭС) с 60 мл 86 %-ного спирта, 20 мл воды и 2 капель концентрированной соляной кислоты. Через час к раствору приливают еще 90 мл ТЭС, и раствор оставляют на сутки при комнатной температуре. Для получения более глубоко гидролизованного продукта вносят 20 мл разбавленной (1: 5) соляной кислоты в 100 мл полученного раствора и через час вливают при перемешивании 100 мл воды.

Другим методом пленкообразующий раствор получают осуществляя гидролиз ТЭС солятой кислотой в количестве 0,6 мл плотностью 1,19 в 98 %-ном этиловом спирте. При этом на 0,04 – 0,12 г-моля HCl берется 1 г-моль ТЭС и 4 моля воды. В качестве растворителя применяют также ацетон. В таком растворе пленкообразующие свойства проявляются не сразу, а токда, когда в основной массе пленкообразующего раствора вместо ТЭС будет находиться продукт его гидролитической поликонденсации Si2O(OC2H5)6 и небольшое количество соединений, содержащих 3, 4 или 5 атомов кремния. При нанесении этих растворов на вращающуюся подложку испаряются летучие компоненты и образуется оводненная полиэфирная пленка, которая последующим прогреванием при 230°С и более высоких температурах превращается в кремнеземную.

Широкое практическое применение пленкообразующих растворов для получения силикатных пленок затруднено отсутствием данных об их свойствах. В литературе имеются лишь отрывочные, единичные сведения по рецептуре их приготовления. Способность этих растворов изменять свои свойства во времени также, видимо, затрудняет их использование.

Как показали исследования [14], весьма легко осуществимо применение растворов неполностью полимеризованного ТЭС для создания пленки на полупроводниковом кремнии. Для этого необходимо провести частичную гидролитическую поликонденсацию ТЭС смесью, содержащей н-бутиловый спирт, воду, кислоту, этиловый спирт, диоксан и др. Например, можно исходить из следующих соотношений: на 1 моль ТЭС взять 2 – 6 молей этилового и 4 – 7 молей н-бутилового спирта, 6 – 8 молей воды и несколько десятитысячных моля соляной кислоты. Смешать компоненты растворителя (спирты, вода и кислота), а затем при перемешивании внести необходимое количество ТЭС. Возможность получения пленки из этих растворов устанавливают опытным путем. Для этого через определенные промежутки времени наносят ~ 0,5 мл раствора на полированную пластину кремния, закрепленную вакуумным присосом на оси центрифуги, сообщают ей вращательное движение. Появление интерференционной окраски и равномерное распределение пленки по поверхности – признак того, что раствор годен к применению. Сроки хранения и склонность к образованию пленки различны для растворов, отличающихся между собой соотношением компонентов. Для каждого состава рабочего раствора эти сроки устанавливаются экспериментально при строго фиксированной скорости вращения пластины. При длительном хранении растворов процесс гидролиза проходит глубже. Это ведет к увеличению вязкости раствора и, следовательно, получению более толстых пленок при той же скорости вращения пластины.

Промежуток времени от момента возбуждения гидролиза до появления пленкообразующих свойств, связанных с химическими и структурными превращениями, получил название времени созревания растворов. Созревшие растворы пригодны для нанесения последовательно большого количества слоев. При этом следует проводить между нанесением слоев промежуточную термообработку при 600 – 800°С в течение 1 мин. Таким путем можно увеличить толщину пленки, например от 0,3 до нескольких микрометров. Созревание растворов сменяется старением. На этой стадии растворы теряют подвижность, исчезают их пленкообразующие свойства.

Влияние на скорость процесса гидролитической поликонденсации ТЭС таких факторов, как состав гомогенной среды, количество этилового спирта, воды и кислоты хорошо прослеживается по тому, как меняется динамическая вязкость во времени при изменении этих факторов.

В [14] установлено, что процесс, приводящий к появлению пленкообразующих свойств у растворов, протекает быстрее при увеличении количества взятой воды, уменьшении кислотности среды и уменьшении количества этилового спирта. Замена ацетона простыми спиртами также усиливает процесс гидролиза, при этом чем выше молекулярный вес спирта, тем сильнее это проявляется.

Исходя из практического опыта, полученного в результате экспериментов [14], установлено, что более равномерные по толщине пленки получаются тогда, когда гомогенной средой является смесь бутилового и этилового спиртов или бутилового спирта и ацетона. В связи с этим обстоятельством представляется особенно целесообразным применение в качестве гомогенной среды смеси указанных растворителей в соотношениях 2 : 1, 1 : 1, 1 : 2.