SiO2 + 2C + Fe = FeSi + 2CO.
Степень восстановления Si и Mn зависит в основном от расхода кокса; на каждый процент повышения содержания Si в чугуне расход кокса увеличивается на 5—7%, что увеличивает количество горячих газов в печи, вызывая перегрев шахты. Обогащение дутья кислородом, обеспечивая высокий нагрев горна, уменьшает количество образующихся газов, а следовательно, и температуру в шахте печи.
Сера в доменном процессе. S вносится в доменную печь в основном коксом и переходит в газы в виде паров (SO2, H2S и др.), но большая часть остаётся в шихте (в виде FeS и CaS); при этом FeS растворяется в чугуне. Для удаления S из чугуна необходимо перевести её в соединения, нерастворимые в чугуне, например в CaS:
FeS + CaO = CaS + FeO. (2)
Это достигается образованием в доменной печи жидкоподвижных шлаков с повышенным содержанием СаО. Восстановительная среда благоприятно влияет на этот процесс, т.к. снижает содержание FeO в шлаке. Степень обессеривания достаточно высока, и только в некоторых случаях чугун дополнительно обессеривается вне доменной печи различными реагентами.
Образование чугуна и шлака. Восстановленное в доменной печи Fe частично науглероживается в твёрдом, а затем в жидком состояниях. Содержание C в чугуне зависит от температуры чугуна и его состава. Шлак состоит из невосстановившихся окислов SiO2, AI2O3 и СаО (90—95%), MgO (2—10%), FeO (0,1—0,4%), MnO (0,3—3%), а также 1,5—2,5% S (главным образом в виде CaS). Для характеристики шлаков пользуются обычно показателем основности CaO/SiO2 или (СаО + MgO)/SiO2. Основность CaO/SiO2 для разных условий плавки колеблется в пределах 0,95—1,35%. При выплавке чугуна на коксе с повышенным содержанием S (донецкий кокс) работают на шлаках с верхним пределом основности и стремятся обеспечить содержание MgO в шлаке 6—8% и более, улучшая его жидкоподвижность.
Определив объект управления можно перейти к постановке задачи.
1.5 Постановка задачи
Данный подраздел содержит постановку задачи, которая заключается в разработке логико-формальной и сетевой модели. Для этого необходимо представить структуру объекта управления в виде графов, сформировать матрицы смежности, классифицировать переменные, построить множества, а также составить логические взаимосвязи.
2. Разроботка структурной модели объекта управления (в виде графов)
В данном разделе будет разрабатываться сетевая модель. Я постараюсь представить структуру управления в виде графов, направление ребер которого будет определено технологией получения чугуна. Для этого нам понадобиться предыдущая глава (подпункт 1.2 и 1.4). Также в этой главе, по полученному графу составим матрицу связности вершин и ребер, и матрицу инцидентности.
2.1 Представление структуры объекта управления (в виде графов)
В данном пункте будет составлен граф структуры объекта управления, который основывается на схему технологии производства (Рисунок 1.4.1).
Составим таблицу эквивалентности вершин и дуг для изображения ориентированного графа.
| Оборудование (вершины) | Эквивалентная единица |
| Поставщик | V1 |
| Разгрузочная эстокада | V2 |
| Рудный двор | V3 |
| Бункера | V4 |
| Аглофабрика | V5 |
| Загрузочное устройство | V6 |
| Колошниковое устройство | V7 |
| Шахта | V8 |
| Фурменные устройства | V9 |
| Воздуходувные машины | V10 |
| Воздухонагревательное устройство | V11 |
| Газоподавательные устройства | V12 |
| Горн | V13 |
| Летки (для чугуна) | V14 |
| Летки (для шлака) | V15 |
| Желоб (для чугуна) | V16 |
| Желоб (для шлака) | V17 |
| Чугуноразливочная машина | V18 |
| Шлакоразливочная машина | V19 |
| Ковши для чугуна | V20 |
| Ковши для шлака | V21 |
| Чугуновозы | V22 |
| Шлаковозы | V23 |
| Сталеплавительный цех | V24 |
| Шлаковая гора | V25 |
| Пылеуловитель | V26 |
| Трубы для газоотводов | V27 |
| Потоки материала (дуги) | Эквивалентные еденицы |
| Сырье (саморазгружающие вагоны) | E1 |
| Сырье (разгрузка)Сырье (вагоноопракидователями) | E2E3 |
| Железная руда, окатыш, марг. руда (скипами) | E4 |
| Кокс (транспортерами) | E5 |
| Агломират (скипами) | E6 |
| Кокс, железные руды, флюсы (аппарат засыпания) | E7 |
| Кокс, железные руды, флюсы | E8 |
| Топливо | E9 |
| Воздух | E10 |
| Воздух (t) | E11 |
| Газ | E12 |
| Жидкий железняк и чугун | E13 |
| Чугун | E14 |
| Шлак | E15 |
| Чугун | E16 |
| Шлак | E17 |
| Чугун | E18 |
| Шлак | E19 |
| Чугун | E20 |
| Шлак | E21 |
| Чугун | E22 |
| Шлак | E23 |
| Шлак | E23 |
| Чугун | E24 |
| Шлак | E25 |
| Пыль | E26 |
Таблица 2.2 -Эквивалентности дуг
Составив таблицы эквивалентности (Таблица 2.1 и Таблица 2.2), можно приступать к составлению графа, который базируется на технологии и структуре объекта управления.
Составив, структуру объекта управления в виде графов можно составить матрицы смежности.
2.2 Формирование матрицы смежности
В данном подпункте, используя раздел 2.1, сформируем матрицу смежности вершин.
| V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | V16 | V17 | V18 | V19 | |
| V1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V2 | -1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V3 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V4 | 0 | 0 | -1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V6 | 0 | 0 | 0 | -2 | -1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V7 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V8 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | -1 | 0 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| V9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| V14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | 0 | 0 | 0 |
| V15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | 0 | 0 |
| V16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | 0 |
| V17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 |
| V18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 |
| V19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 |
| V20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
| V21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
| V22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Таблица 2.4-Матрица смежности вершин.
Используя раздел 2.1, сформируем матрицу инцидентности вершин и дуг.
| E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 | E10 | E11 | E12 | E13 | E14 | E15 | E16 | E17 | E18 | E19 | |
| V1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V2 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V3 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V4 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V6 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V7 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| V9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 0 | 0 | 0 | 0 |
| V14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 | 0 | 0 |
| V15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 | 0 |
| V16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 |
| V17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 1 |
| V18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 |
| V19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 |
| V20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| V27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Таблица 2.5Матрица инцидентности