Смекни!
smekni.com

Розробка модифікованих композиційних покриттів на поліорганосилоксановій основі для захисту магістральних трубопроводів (стр. 2 из 4)

Структура та обсяг роботи. Дисертаційна робота складається з вступу, семи розділів, висновків, списку літератури і додатків. Робота викладена на 149 сторінках, включає 18 таблиць, 59 рисунків та містить 163 джерела цитованої літератури.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі обгрунтовано актуальність теми дисертаційної роботи, сформульовано предмет, об’єкт, мету та завдання досліджень, наукову новизну і практичну цінність.

У першому розділі представлено огляд літератури щодо впливу кремнієорганічної матриці, мінеральних наповнювачів, олігомерно-полімерних модифікаторів і каталізаторів "холодного" тверднення на процеси структурування і характеристики термостійких кремнієорганічних композиційних покриттів. Аналіз літературних джерел показав, що використання поліорганосилоксанів, як основи (матриці) композицій, дозволяє отримувати матеріали і покриття з високими фізико-механічними, ізоляційними і протикорозійними параметрами, термостабільністю, водо - та хімічною тривкістю.

На основі критичного аналізу літератури окреслено основні напрямки синтезу, наповнення і модифікації композицій на кремнієорганічній основі та отримання ефективних покриттів, що відповідають вимогам до ізоляції трубопроводів в нафтогазовому комплексі України, насамперед, вимогам ДСТУ 4219: 2003. Встановлено наступне:

оптимальні фізико-механічні та ізоляційні параметри, термостійкість і технологічність приготування та нанесення характерні для мінеральнонаповнених поліметилфенілсилоксанів, зокрема, лаку КО-921 виробництва ВАТ "Запорізький завод “Кремнійполімер”;

цілеспрямоване введення в склад мінеральнонаповнених кремнієорганічних композицій олігомерно-полімерних модифікаторів, зокрема поліуретанів і поліепоксидів, сприяє їх структуруванню з покращенням комплексу властивостей, зокрема, еластичності, діелектричної суцільності, адгезії та протикорозійних характеристик;

каталізатори тверднення забезпечують “холодне” (20±5 оС) структурування мінерально наповнених і модифікованих кремнієорганічних покриттів.

Удругому розділі описано вихідні матеріали і методики експериментальних досліджень. Як основу композиційних кремнієорганічних систем використовували поліметилфенілсилоксановий лак КО-921, як каталізатори тверднення – диетиламін (ДЕА), γ – амінопропілтриетилоксисилан (АГМ-9) і октоат кобальту.

Як мінеральні наповнювачі – кам’яновугільну золу та оміакарб, як модифікатори – поліуретан "ALFAPURSZ 1040 P" (Польща) і композиції на основі епоксидної смоли ЕД-20.

Термічне тверднення мінеральнонаповнених і модифікованих кремнієорганічних композицій проводили при температурах: 60 0С – 1 год; 120 0С – 1 год; 180 0С – 1 год; 210 0С – 4 год. Каталітичне тверднення – при нормальній температурі – 48-72 год.

Ступінь зшивання композитів визначали за вмістом гель-фракції, екстрагуючи ацетоном низькомолекулярні компоненти в апараті Сокслета. Тонкі структурні характеристики систем “поліметилфенілсилоксан – поліуретан або каталізатор тверднення – диетиламін", досліджували методом інфрачервоної (ІЧ) спектроскопії в діапазоні хвильових чисел 4000-400 см-1 на спектрофотометрі “Specord M-80” (Німеччина).

Термостійкість композитів досліджували на дериватографі “Паулік, Ердей” (Німеччина), використовуючи методи диференційно-термічного (ДТА) та термогравіметричного (ТГА) аналізів. Мікроструктуру вивчали на растровому електронному мікроскопі "AkashiDS-130C" (Японія). Внутрішні напруження визначали консольним методом.

Фізико-механічні характеристики кремнієорганічних матеріалів і покриттів визначали вимірюючи: твердість маятниковим приладом МЭ-3, ударну міцність – приладом У2-Т за ДСТУ 4219: 2003 Дод. А, еластичність – за ДСТУ 4219: 2003 Дод.Ж., динамічну в’язкість – приладом "Reotest-2", адгезію покриттів до сталевої поверхні – методом граткових надрізів (ГОСТ 15140-78).

Ізоляційні характеристики кремнієорганічних матеріалів і покриттів встановлювали за тривалої витримки у водних середовищах. Водопоглинення – за ГОСТ 4650-80; хімічну тривкість – за ГОСТ 12020-72; перехідний електричний опір – за ДСТУ 4219: 2003, додаток Г. Питомий об’ємний електричний опір при водопоглиненні визначали за ГОСТ 22372-77, діелектричну суцільність – за ДСТУ 4219: 2003, додаток В.

Протикорозійні характеристики (ємність і опір) систем „сталева основа – кремнієорганічне покриття” оцінювали імпедансним методом, використовуючи стандартний метод "пустотілих циліндрів" і розроблений здобувачем електрод у 3% -ному водному розчині NaCl.

Кінетику стуктурування поліуретанових композицій вивчали, фіксуючи зміни їх відносної в’язкості за інтенсивністю низькочастотних вібраційних коливань датчика приладу. Фізико-механічні та діелектричні характеристики поліуретанових матеріалів і покриттів визначали за методиками для кремнієорганічних аналогів.

Тест-контроль систем "сталь – покрив", в тому числі на зразках труб і магістральних трубопроводах, здійснювали згідно вимог ДСТУ 4219: 2003 і ВБН В.2.3-00018201.01.02.01-96.

У третьому розділі в процесі розробки кремнієорганічних композиційних матеріалів досліджено процеси адсорбції та десорбції вологи мінеральними наповнювачами та розроблено спрощений метод контролю їх готовності для приготування композицій за визначенням їх діелектричної суцільності, оскільки використання сухих наповнювачів є передумовою створення якісного покриття. Встановлено, що застосування різнодисперних мінеральних наповнювачів – кам’яновугільної золи та оміакарбу для приготування композиції підвищують показники гель-фракції, знижують внутрішні напруження та втрату маси кремнієорганічних матеріалів. Отже, виникла потреба встановити оптимальні кількості вказаних мінеральних наповнювачів в композиції. Спостерігали підвищення комплексу фізико-механічних і діелектричних параметрів мінерально наповнених кремнієорганічних покриттів, зокрема, міцності під час удару до 8,5 Дж та термостійкості до 262 0С за концентрації оміакарбу в межах 19…21 мас. ч. в композиції (рис.1), (Деклараційний патент України, (11) UA № 16276 CO8L 83/04 (2006/01), CO9D 183/04).

Методом електронної мікроскопії встановлено, що різна структура і розміри мінеральних наповнювачів призводять до утворення щільно упакованої структури композитів, що пояснює покращення характеристик кремніє-органічних матеріалів та покрить (рис.2, в).

Дослідження кінетики тверднення композитів на кремнієорганічній матриці з різними мінеральними наповнювачами підтвердили, що оптимальною швидкістю структурування характеризуються композиції з кам’яновугільною золою та оміакарбом.

Встановлено, що механо-хімічна та наступна ультразвукова обробка композицій значно підвищують характеристики мінерально наповнених кремнієорганічних покриттів. Зокрема показник міцності під час удару зростає на 7 Дж, а питомий об’ємний електричний опір – на величину 10,3∙1012 Ом∙м. Отже, ультразвукова обробка композицій дозволяє отримати куремнієорганічні покриття з високими захисними характеристиками, придатними для захисту високотемпературних ділянок газокомпресорних стацій.

У четвертому розділі представлено результати дослідження композиційних матеріалів і покриттів типу "кремнієорганічна матриця – мінеральні наповнювачі – поліуретанові модифікатори". Метою досліджень було створення покрить з підвищеною еластичністю, оскільки недоліком кремнієорганіки є її крихкість.

В процесі підбору поліуретанових модифікаторів з оптимальними технологічними та експлуатаційними характеристиками вивчено вплив природи і структури їх складових на процеси уретаноутворення. Використано поліуретани на основі полідиетиленглікольадипінатів та їх суміші, а також ізоціанатні компоненти.

Встановлено, що для модифікації кремнієорганічної матриці найбільш ефективними є поліуретанові композиції високої реакційної здатності на основі поліестеру ПДА-800 і 4,41 - дифенілметандиізоціанату (МДІ).

Дослідження впливу поліестерних та диізоціанатних компонентів (поліестер П-7; фталевий ангідрид; 2,4-толуїлендиізоціанат; поліізоціанат) на процеси структурування вихідної кремнієорганічної матриці встановило підвищення фізико-механічних характеристик і питомого об’ємного електричного опору в їх присутності (див. рис.3).

Отже, встановлено, що перспективними модифікаторами для кремнієорганічної матриці на основі лаку КО-921 є рідкі поліуретанові композиції високої реакційної здатності. Зокрема, до них відноситься поліуретан ALFAPURSZ 1040, що має високі фізико-механічні та протикорозійні параметри.

Дослідження кінетики тверднення мінерально наповнених кремніє-органічно-уретанових композицій підтвердили процеси структурування поліметилфенілсилоксану з поліуретаном ALFAPURSZ 1040 P. Встановлено оптимальну кількість поліуретану в композиції - до 4% мас., збільшенні якого процес полімеризації сповільнювався.

Електронна мікроскопія кремнієорганічно-уретанового матеріалу з сумішшю наповнювачів – кам’яновугільної золи та оміакарбу підтвердила утворення однорідного композиційного матеріалу, (рис.4, б).

При введенні у мінеральнонаповнену кремнієорганічну композицію поліуретанового модифікатора збільшуються товщини полімерних зв’язок з поліметилфенілсилоксану, поліуретану і продуктів їх співконденсації, формуються глобули композиційного матеріалу з кількох частинок кам’яновугільної золи і оміакарбу (світлі ділянки ділянки, оточені темною полімерною матрицею), (рис.4, б).

Утворення композиційної структури також підтвердили дослідження фізико-механічних та діелектричних властивостей кремнієорганічно-уретанових покриттів (табл.1).

Встановлено, що із збільшенням вмісту в кремнієорганічній композиції модифікатора "ALFAPURSZ 1040 P" до 15,0% мас. еластичність покриття зростає в 2,5 рази, проте міцність під час удару знижується з 6,5 до 4,5 Дж. Максимальні показники питомого об’ємного електричного опору (4,12∙1012 Ом·м) характерні для покриття з кількістю поліолу 2,0% мас.