Таблиця 1.
Фізико-механічні та діелектричні параметри
кремнієорганічно-уретанових покриттів
№п/п | Параметри, розмірність | Концентрація поліолу,% мас. | ||
2,0 | 4,0 | 15,0 | ||
1. | Міцність під час удару, Дж | 8 | 7,8 | 4,5 |
2. | Адгезія, бал | 1,0 | 1,0 | 2,0 |
3. | Еластичність,% | 4,5 | 7,1 | 9,0 |
4. | Питомий об’ємний електричний опір, Ом·м | 4,12·10 12 | 2,14·10 12 | 1,81·10 12 |
5. | Діелектрична суцільність, кВ/мм | 17,5 | 18,1 | 17,0 |
У п’ятому розділі досліджено імпедансні характеристики (опір і ємність) мінерально наповнених і модифікованих кремнієорганічних покрить сталевих електродів в 3% - ному розчині хлориду натрію методом "пустотілих циліндрів" і методикою розробленого електродом.
Електрод розроблено на рівні винаходу (патент України (19) UA № 12978 від 2006 р., МПК (51), GO1N 27/07 (2006.01)) і призначено для вимірювання імпедансних характеристик покрить на сталевих пластинах, трубопроводах і металоконструкціях не тільки в лабораторних, а й в експлуатаційних умовах, (рис.5). Перевагою електроду є можливість проведення прискорених вимірювань на трубах різної кривизни та вертикальних поверхнях металоконструкцій.
Імпедансні дослідження встановили, що для кремнієорганічних покриттів з щільноупакованою структурою наповнювачів, затверднених при 170 і 300 0С, характерні високі протикорозійні параметри (Рис.6).
а)
б)
в):
Рис.6. Залежності логарифмів опорів (частота - 1 кГц) сталевих електродів з покриттями:
1) з кам’яновугільною золою та оміакарбом
2) 2 - з кам’яновугільною золою;
3) з кам’яновугільною золою та поліуретаном після тверднення при температурах 20, 170,
300 0С у 3% - ному розчині NaCl.
Для кремнієорганічно-уретанових покриттів оптимальними є нормальні умови тверднення. Кремнієорганічна ізоляція з кам’яновугільною золою характеризується мінімальними показниками опору при різних температурах тверднення.
У шостому розділі досліджено структурні характеристики розроблених кремнієорганічних матеріалів і покриттів. Встановлено, що застосування диетиламіну для затверднення кремнієорганічного лаку КО-921 підвищує показник гель-фракції з 20 до 89,7% мас. під час зростання температури твердення.
Процеси кінетики тверднення фіксують пришвидшене структурування поліметилфенілсилоксану з модифікаторами - диетиламіном та поліуретановою системою ALFAPURSZ 1040 P.
Інфрачервона спектроскопія підтвердила, що поява смуг поглинання NH – 3450, 3296 см-1, на затвердненому при 20 0С в присутності диетиламіну поліметилфенілсилоксані говорить про їх "холодне" каталітичне структурування. А також, виявленні на спектрі кремнієорганічної матриці з поліуретаном – типові для поліметилфенілсилоксану смуги поглинання (см-1): Si–C6H5 – 1432; OH – 3616; CH3 – 2960, 2880; C6H5 – 1592, 1500, 1450, засвідчили хімічне зшивання ОН-груп поліметилфенілсилоксану з функціональними групами поліуретанового модифікатора, (рис.7).
Встановлено, що термічне тверднення композицій на основі лаку КО-921 підвищує показники гель-фракції кремнієорганічних та кремнієорганічно-уретанових матеріалів. Найвищі показники мають композити з оміакарбом та з щільно упакованою структурою наповнювачів – (95,0%), наступним був кремнієорганічно-уретановий матеріал (92,0%), з кількістю поліолу 2,0% мас.
Встановили показники гель-фракцій для матеріалів "модифікований грунт+матеріал" після термообробки: І) з кам’яновугільною золою; ІІ) з оміакарбом; ІІІ) з кам’яновугільною золою та оміакарбом; ІV) з кількістю поліолу SZ 1040 P – 2,0% мас; V) з кількістю поліолу SZ 1040 P – 4,0% мас.; VІ) з кількістю поліолу SZ 1040 P – 15,0% мас., (рис.8).
Встановлено, що кремнієорганічні матеріали мають вищі показники гель-фракції, ніж кремнієорганічно-уретанові. Порівняння гель-фракцій композиту "грунт + покривні матеріали" засвідчило, що ці величини є значно вищими, ніж у композиту без грунту.
З рис.9, слідує, що мінерально наповнені кремнієорганічно-уретанові покриття з грунтом мають значно нижчі значення внутрішніх напружень, ніж кремнієорганічні. При збільшенні вмісту поліолу понад 2,0% мас. внутрішні напруження зменшуються.
Окрім цього, внутрішні напру-ження збільшуються із збільшенням товщини покриття.
Методом диференційно - термічного аналізу встановлено, що найвищою термотривкістю характер - ризувались кремнієорганічні матеріали з оміакарбом та з щільно-упакованою структурою мінеральних наповнювачів, що підтверд-жують криві термічних ефектів (рис.10, а).
Рис.10. Порівняльні криві термічних ефектів ΔТ (а) та залежність втрати маси (б) при нагріванні мінерально наповнених і модифікованих кремнієорганічних матеріалів, що містять:
1 – кам’яновугільну золу; 2 – оміакарб; 3 – кам’яновугільну золу та оміакарб; 4 – кам’яновугільну золу та поліуретан (2,0% мас).
З термогравіметричного аналізу видно, що найменше втрачає масу матеріал з кам’яновугільною золою та оміакарбом. Найменш стабільним є композит з поліуретаном та кам’яновугільною золою, оскільки для нього процеси втрати маси відбуваються при температурах 100-120 та 120-210 0С (рис.10, б).
Встановлено закономірності впливу мінеральних наповнювачів та олігомерно-полімерних модифікаторів на структурування та фізико-механічні, діелектричні та протикорозійні параметри композиційних матеріалів та покрить на основі поліметилфенілсилоксанового лаку КО-921. На основі цих досліджень розроблено нові термостійкі кремнієорганічні та кремнієорганічно-уретанові покриття з покращеними ізоляційними і протикорозійними властивостями.
Розроблено пристрій та методику для визначення імпедансних характеристик покрить. Створено пристрій для контролю готовності мінеральних наповнювачів для приготування кремнієорганічних композицій.
1. Встановлено, що поліепоксидні та поліуретанові модифікатори, а також амінні та оловоорганічні каталізатори забезпечують "холодне" зшивання поліметилфенілсилоксанової матриці та її систем з мінеральними наповнювачами, утворюючи ефективні композиційні матеріали і покриття.
2. Встановлено, що підвищення температури тверднення композицій на основі кремнієорганічної матриці пришвидшують процеси їх структурування.
Дослідження кінетики тверднення та ІЧ-спектри показали, що поліметилфенілсилоксанова матриця вступає в реакції хімічної взаємодії з поліольними та ізоціанатними компонентами поліуретанової системи ALFAPURSZ 1040 P та на основі цього розроблено мінерально наповнені кремнієорганічно-уретанові покриття, з підвищеною еластичністю, діелектричною суцільністю та низькими внутрішніми напруженнями.
Встановлено позитивний синергетичний ефект впливу мінеральних наповнювачів різної природи - оміакарбу та кам’яновугільної золи на структуру на характеристики кремнієорганічних композиційних матеріалів і покриттів. На основі цих досліджень розроблено композиційні покриття з щільно упакованою структурою наповнювачів з високою міцністю під час удару 8,5 Дж, які запатентовано і впроваджено в практику.
Встановлено, що структурування мінерально наповнених кремнієорганічних композицій під дією механо-хімічної та ультразвукової обробки значно покращує характеристики ізоляційних матеріалів і покриттів;
Розроблено пристрій для контролю готовності мінеральних наповнювачів для приготування кремнієорганічних композицій методом визначення їх діелектричної суцільності.
Створено електрод та розроблено методику вимірювання ємності та опору протикорозійних покриттів в лабораторних та експлуатаційних умовах, запатентовано та впроваджено в практику.
1. Стефан В.П., Непріла М.В., Черватюк В.А. Вплив поліестерних та ізоціанатних компонентів на процес тверднення кремнієорганічних композицій // Фізико-хімічна механіка матеріалів. - 2006. - № 6. - С 123-124.
2. Л. Голушкова, І. Галань, М. Непріла, О. Гулай. Вплив поліестерних та ізоціанатних складових на наростання відносної в’язкості поліуретанових композицій в процесі їх полімеризації // Вісник Терноп. ДТУ - 2006. - № 1 - 31 с.
3. Маруха М., Гнип І. Протикорозійні температуротривкі кремнієорганічні покриви з ущільненими мінеральними наповнювачами // Фізико-хімічна механіка матеріалів. - 2004. - № 1. - С.75.
4. Гнип І. П, Непріла М.В., Личковський Е.І. Електрод для експрес – вимірювань омічних та імпедансних характеристик захисних покривів трубопроводів // Фізико-хімічна механіка матеріалів. - 2006. - № 5. - С.98 - 102.
5. Гнип І. П, Маруха М. В, Ратушна М.Б. Методичні аспекти вимірювань електрохімічних характеристик захисних покривів на металоконструкціях в експлуатаційних умовах // Вісник НТУ „ХПІ”. „Хімія, хімічна технологія і екологія”. - 2005. - № 16. - с.52-55.
6. Стефан В.П., Маруха М.В., Завербний М.Д. Cучасні антикорозійні матеріали і технології для захисту магістральних трубопроводів // XVI Відкрита науково-технічна конференція молодих науковців і спеціалістів ФМІ НАНУ, матеріали конференції КМН-2001 16-18 травня 2001. – С 25-28.
7. М.В. Непріла. Характеристики кремнієорганічно-уретанових композиційних матеріалів та покривів. // Фізико-хімічна механіка матеріалів. - 2007. - № 6. - С.61-64.
8. Електрод для вимірювання електрохімічних характеристик захисних покриттів / Гнип І.П., Непріла М.В., Мерцало І.П. // Деклараційний патент України UA № 12978 Бюлетень №3 від 15.03. 2006 р.
9. Кремнієорганічна композиція для протикорозійного термотривкого покриття / І. П Гнип., М. В Непріла., І.Ф. Сіренко, В.І. Блохін // Деклараційний патент України, UA № 16276 Бюлетень №8 від 15.08. 2006 р.
Маруха М.В. "Розробка модифікованих композиційних покриттів на поліорганосилоксановій основі для захисту магістральних трубопроводів". Рукопис.