Смекни!
smekni.com

Стойкость изложниц в условиях их эксплуатации на комбинате "Криворожсталь" (стр. 4 из 10)

Окислительные процессы в феррите протекают значительно быстрее, чем в перлите. При испытании образцов из перлито-ферритного чугуна на разгароустойчивость установлено, что пограничное окисление феррита наблюдается после 10 – 20 циклов, в первую очередь вокруг графита. При увеличении числа циклов окисление продвигается от графитовых включений в глубь матрицы в основном по ферритным полям, огибая перлитные участки, и только при значительном числе циклов (150 – 200) может проходить по перлиту [15].

Изложницы из чугуна с перлитной структурой лучше противостоят образованию сетки разгара, чем с перлитно-ферритной. С другой стороны, разгароустойчивость чугуна с мелкими включениями графита, полученного авторами в поверхностном слое изложниц при исследовании стержней из материалов с высокой теплоаккумулирующей способностью, выше перлито-ферритного.

Следовательно, для замедления развития сетки разгара на рабочей поверхности изложниц необходимо повышать пластичность (в условиях умеренного окисления), либо повышать ростоустойчивость, даже в ущерб пластичности [2].

Представляет интерес опыт работы металлургического комбината «Запорожсталь» [16] в котором показано важное значение смачиваемости и адгезии. Изложницы из ваграночного чугуна, используемые для разливки высоколегированных сталей, обладали большей склонностью к привариванию слитков. После замены ваграночного чугуна доменным стойкость изложниц резко повысилась, но сетка разгара развивается более интенсивно. Это объясняется наличием в доменном чугуне большого количества крупных включений графита, что способствует уменьшению смачиваемости поверхности изложниц сталью, но, в то же время, приводит интенсификации процессов окисления и роста чугуна в поверхностном слое.

Выполненный анализ исследования по данному вопросу позволяет сделать вывод, что при оценке пригодности материала для изложниц необязательно и нецелесообразно принимать во внимание какой-то строго определенный фактор (температура, химсостав, макроструктура и т.д.) характеристики изложницы, а только несколько важнейших из них. Принципиальный подход к выбору материала обязательно должен базироваться на анализе условий работы изложниц и превалирующих причин их отбраковки. Если придерживаться такого принципа, то некоторые характеристики, признанные важнейшими, могут быть отнесены в разряд второстепенных без ущерба для стойкости изложниц [2].

1.5. Способы повышения стойкости изложниц

Многочисленные исследования в области повышения стойкости изложниц посвящены, главным образом, вопросам связанным с образованием сквозных трещин [14 – 17]. Пути предотвращения этих дефектов определены довольно четко. Однако за счет повышения трещиноустойчивости изложниц нельзя полностью решить проблему снижения их расхода.

Характерными причинами отбраковки изложниц на большинстве отечественных заводов в настоящее время являются приваривание слитков, сетка разгара и выгары [13].

Так по данным работы [14] следует различить два вида приваривания:

1) приваривание на ранних этапах эксплуатации, возникающее в результате смещения струи, повышенной температуры разливаемой стали и высокой начальной температуры изложниц;

2) позднее приваривание, «заклинивание слитка», происходящее в результате проникновения жидкой стали в трещины сетки разгара.

Повышение температуроустойчивости рабочей поверхности изложниц может быть достигнуто двумя путями: созданием защитных покрытий на рабочей поверхности и улучшением качества чугуна в процессе отливки изложниц. Использование защитных покрытий в виде намазок, экранов и вставок требует значительных материальных затрат. Поэтому на отечественных заводах защитные экраны, покрытия не нашли широкого применения. Более перспективными являются способы улучшения качества чугуна изложниц в процессе их отливки.

Распространенным способом улучшения структуры и свойств чугуна является модифицирование.

В качестве модификаторов были опробованы ферротитан, титановые губки, феррованадий, гранулированный ферросилиций, чугунная стружка и др. [7]. Производственные испытания опытных партий показали, что модифицирование титаном, способствующее укрупнению графита, эффективно для замедления процесса образования сквозных трещин.

Следует отметить, что при добавке титана (в виде губок) в ковш и особенно в литниковую чашу достигнут больший эффект, чем при вводе его в вагранку (при одинаковом остаточном содержании титана в чугуне 0,05%). Титан в большей степени эффективен как модификатор и в меньшей как легирующий элемент.

Измельчение эвтектического зерна и графита под влиянием феррованадия и гранулированного ферросилиция отрицательно сказывается на трещиноустойчивости изложниц, однако развитие разгара замедляется. В условиях интенсивной эксплуатации при разливке высоколегированных сталей стойкость изложниц из чугуна, модифицированного гранулированным ферросилицием, повысилась по сравнению с обычными на 42% [3].

Таким образом, для повышения термоустойчивости поверхности изложниц без ущерба для трещиноустойчивости необходимо измельчать структуру чугуна только в рабочем слое [15].

Среди известных способов улучшения структуры в рабочем слое отливок наиболее подходящим для изложниц является поверхностное модифицирование и легирование. В качестве легирующих компонентов в составе активных красок для стержней изложниц опробованы теллур, феррохром и различные соединения на основе бора. При выборе этих компонентов предполагалось повысить ростоустойчивость окалиностойкость чугуна в рабочем слое изложниц. В структуре повепхностного слоя наблюдалось измельчение и образование отдельных включений карбидов. Активные составляющие красок в данном случае играют роль и модификаторов, и легирующих элементов. Замена части графита в рабочем слое карбидами повышает термоустойчивость в результате замедления окисления, развивающегося по графитовым включениям. Разложение карбидов в процессе охлаждения отливки в форме и при эксплуатации способствует уплотнению чугуна [16].

В этом аспекте представляет интерес следующий эксперимент [2].

Изложницу отливали по стержню, который после коксо-графитовой краски покрывали слоем феррохрома. После 10 наливов из нее высверливали керновые пробы. В структуре поверхностного слоя еще сохранялись карбиды хрома (рис. 1-9). Однако на одном участке, там, где отсутствуют карбиды, уже хорошо заметно окисление. На участке с перлитно-карбидной структурой чугун практически не окислен, т.е. карбиды хрома замедляют процесс окисления чугуна.

Поверхностное модифицирование и легирование существенно влияет на формирование структуры чугуна в поверхностном слое изложниц, и способствует повышению стойкости на 14 – 33%. По данным исследований [17] более технологичным является модифицирование борной кислотой. Толщина улучшенного слоя при использовании борной кислоты колеблется в пределах 5 – 10 мм. В изложницах из доменного чугуна в этом слое графит располагается в виде отдельных включений, а при обычных условиях кристаллизации – в виде мало изолированных колоний (рис. 1.10). Большее измельчение графитовых включений наблюдается в ваграночном чугуне (рис. 1.11).

Поверхностное модифицирование и легирование эффективно для замедления процесса развития сетки разгара и для повышения стойкости изложниц против заклинивания слитков. Стойкость промышленной партии изложниц с улучшенной структурой рабочего слоя на 11 –14% выше, чем у обычных.

Изложницы с металлокерамическим рабочим слоем толщиной 1,5 – 2 мм (рис. 1.12) хорошо противостоят раннему привариванию [15]. При эксплуатации опытных 6-и тонных изложниц на Днепропетровском заводе им. Петровского при разливке рельсовой стали, случаев приваривания не наблюдалось.

В то же время 75% обычных изложниц вышли из строя в результате приваривания слитков. Средняя стойкость 30 опытных изложниц оказалась на 48% выше стойкости контрольных. Испытание изложниц с металлокерамическим рабочим слоем в условиях интенсивного развития сетки разгара не дало положительных результатов вследствие низкой термостойкости этого слоя.

Для предотвращения приваривания слитков из высоколегированных сталей оказалось эффективным создание защитной пленки из окислов алюминия на рабочей поверхности изложниц [5].


2. ТЕОРЕТИЧЕСКИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СТОЙКОСТИ ИЗЛОЖНИЦ В УСЛОВИЯХ ИХ ЭКСПЛУАТАЦИИ НА КГГМК «КРИВОРОЖСТАЛЬ»

2.1. Характеристика принимаемых на КГГМК «Криворожсталь» изложниц и анализ их стойкости

Для разливки кипящей и полуспокойной стали сверху и сифоном применяются уширенные книзу сквозные изложницы типа КС – 8п, (рис. 2.1), расчетная масса слитка:

спокойной стали – 8,9 т;

кипящей стали – 8,6 т;

расчетная масса изложницы – 8,6 т.

И МКС – 12,5 т (рис. 2.2):

общая масса слитка – 12,9 т;

расчетная масса изложницы – 13,1 т.

Для разливки спокойной стали применяются изложницы уширенные кверху, глуходонные с прибыльными надставками типа С – 9 (рис. 2.3):

расчетная масса слитка – 9,1 т;

масса прибыльной надставки – 1,25 т;

общая масса слитка – 8,4 т;

масса изложницы – 10,8 т;

и изложница типа МС – 12 (рис. 2.4):

расчетная масса слитка – 10,5 т;

масса прибыльной надставки – 2,4 т;

общая масса слитка – 12,5 т;

масса изложницы – 12,5т;

Изложницы уширенные книзу типа КС – 8п для разливки спокойной стали изменяют с теплоизоляционными плитами.

Первые – для разливки сверху, вторые для разливки сверху и сифоном [20].

Типы изложниц и способ разливки стали на КГГМК «Криворожсталь» приведены в таблице 2.1.

Таблица 2.1 – Типы изложниц и способ разливки стали на комбинате «Криворожсталь»

№ п/п Тип изложниц Способ разливки Вид стали Масса слитка Примечание
1 С-9 сверху спокойная 8,5
2 МС – 12 сверху спокойная 12,5
3 КС – 8п сверху и сифоном спокойная 8,5 С ТИВ
4 КС – 8п сверху и сифоном кипящая 8,5
5 МКС сверху кипящая 12,5
6 МКС сверху спокойная 12,5 С ТИВ

Расходный коэффициент изложниц на 1 тонну стали на комбинате «Криворожсталь» составляет: КС – 8п – 11кг/т стали, МКС – 12,5 – 12,7кг/т стали, С – 9 – 30кг/т стали, МС – 12 – 22кг/т стали.