В общем случае дефекты лопаток турбины и компрессора, устраняемые в процессе ремонта, могут быть систематизированы следующим образом: нагар, налет алюминия, графита на трактовых поверхностях пера и бандажных полок; нарушение теплозащитных и антикоррозионных покрытий; дефекты основного материала лопаток в виде потемнения и окисления, а также механические повреждения в виде изъязвлений, забоин, царапин и т. п.
Области возможного применения струйной ГАО при изготовлении и ремонте лопаток компрессора и турбины авиационных двигателей показаны на рис. 1. Кроме обработки лопаток струйная ГАО может успешно применяться при обработке сложных поверхностей таких деталей, как диски турбины и компрессора, зубчатые колеса, крыльчатки и др. Целесообразно струйную ГАО применять и для окончательной обработки канавок режущих инструментов (сверл, зенкеров и др.), полостей матриц и т. п.
4. СРОК СЛУЖБЫ СУСПЕНЗИИ И РЕГЕНЕРАЦИЯ АБРАЗИВНОГО МАТЕРИАЛА
Абразивные частицы в процессе ударного взаимодействия с обрабатываемой поверхностью изнашиваются, их рабочие грани скругляются, что приводит с течением времени к снижению общей абразивной способности. Хотя разрушение абразивных частиц при струйной ГАО протекает в десятки раз медленнее, чем при пескоструйной обработке, что объясняется демпфирующим действием рабочей жидкости, срок службы суспензии имеет определенные пределы. При непрерывной обработке в зависимости от вида абразивного материала, схемы установки струйной ГАО и конфигурации обрабатываемых деталей срок службы суспензии составляет от 40 до 70 часов. Суспензию эксплуатируют до тех нор, пока в отстоявшейся пробе разрушенные абразивные частицы не превысят 10 % общего объема суспензии, в противном случае суспензию заменяют.
Для нормального протекания процесса струйной ГАО суспензия в баке установки должна быть однородной, что обеспечивается постоянным барботированием осевших на дно бака абразивных частиц.
Во избежание возврата в суспензию тех абразивных частиц, которые в результате многократных ударов но обрабатываемой поверхности разрушились и изменили свои размеры, в некоторых установках имеются расширители и эксгаустеры. В расширителях струя, отраженная от обрабатываемой поверхности, теряет скорость, и раздробленные абразивные частицы вместе с воздухом, насыщенным парами рабочей жидкости, отсасываются в фильтр. Периодически фильтр очищают и абразивные частицы сортируют для повторного использовании.
При струнной ГАО абразивные частицы в суспензии должны быть одинаковыми, чтобы устранять следы предшествующей обработки поверхности и создавать новую однородную микрогеометрию поверхности. Только при особых вилах струйной ГАО суспензию составляют из абразивных частиц разной зернистости. Если раздробленные частицы абразивного материала длительное время не удалять из суспензии, то эффективность струйной ГАО снизится.
Устройства для сортировки отработавшего абразивного материала применяют лишь в крупных установках для струйной ГАО или в цехах, где работает несколько установок и где применяются дорогие сорта абразивных материалов.
5. ПРОИЗВОДИТЕЛЬНОСТЬ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ
Одним из основных показателей, характеризующих эффективность любого способа обработки, является его производительность. При струйной ГАО производительность определяется временем, необходимым для удаления припуска заданной величины с обрабатываемой поверхности, или временем, в течение которого достигается требуемое состояние поверхностного слоя. Для количественной оценки производительности струйной ГАО служит величина массового съема материала в единицу времени.
Известно, что на производительность струйной ГАО основное влияние оказывают такие параметры, как время обработки, размер абразивных частиц, концентрация абразивных частиц в суспензии, давление эжектирующего воздуха, угол атаки частиц, длина струи, марка абразивного материала.
Абразивные частицы при столкновении с обрабатываемой поверхностью внедряются в нес и проходят некоторое расстояние, вызывая разрушение материала. В соответствующей литературе при объяснении износа поверхностей абразивными частицами в зависимости от физико-механических свойств абразивного и обрабатываемого материалов, формы абразивных частиц, отношения глубины их внедрения к радиусу скругления вершин зерен, усилия разрушении и т. п. выделяются три вида износа материала :
1) упругое внедрение: в этом случае h/r<0,01 (где h — глубина внедрения мм, r- радиус скругления вершин зерен мм) и разрушение материала происходит в результате фрикционно-контактной усталости, близкой но природе к обычной усталости материалов;
2) полидеформационное разрушение (пластический контакт): h/r= =0,01...0,5;
3) микрорезание (хрупкое и вязкое разрушение): этот вид разрушения наблюдается при больших углах резания и отношениях h/r >0,5. Так как абразивные частицы имеют неправильную форму и в момент удара могут быть как угодно ориентированы в пространстве, деформационные процессы, происходящие в зоне контакта, не будут постоянными даже при постоянстве таких параметров, как угол атаки, скорость и масса абразивных частиц.
Обычно макрорельеф абразивной частицы представляет собой совокупность выступов (вершин) и впадин, причем радиус скругления вершин и угол при вершинах зависят от размеров частицы. Исследования отпечатков, оставленных на поверхности частицами, показали, что при малых скоростях движения частиц деформирование материала производится в основном вершинами зерен. С увеличением скорости движения размеры лунок определяются характерным размером (диаметром) частицы.
Движение частицы по поверхности сопровождается изменением условного переднего угла от 90
(начало внедрения) до 0 (внедрение на глубину, равную радиусу), причем этот угол отрицателен. Так как деформирующая часть абразивной частицы является сферической поверхностью, то можно считать, что в момент удара условные передний и задний углы, а также угол резания не будут зависеть от угла наклона оси симметрии частицы относительно поверхности.Внедрение абразивной частицы в обрабатываемую поверхность под острым углом сопровождается возникновением крутящего момента вокруг центра тяжести частицы. При этом энергия вращения частицы при ударе составляет менее 1 % энергии ее поступательного движении. Поэтому при расчетах энергии, потерянной частицей при ударе, ее вращением можно пренебречь.
При внедрении частицы происходит в общем случае упруго-пластическое деформирование обрабатываемой поверхности, причем общая глубина внедрения будет равна сумме упругой и пластической составляющих деформаций. На начальном этапе внедрения происходит упругое деформирование. Очаг пластической деформации зарождается при достижении максимальными напряжениями в центре площадки контакта (согласно теории Герца) критического значения. Расчеты показывают, что для большинства металлов и сплавов, применяемых в авиадвигателестроении, величина упругого внедрения на несколько порядков меньше радиуса скругления вершин абразивной частицы. Поэтому, пренебрегая упругой деформацией, можно считать, что обрабатываемая поверхность представляет собой пластическое полупространство. Для анализа взаимодействия абразивной частицы с поверхностью примем следующие допущения:
1 ) абразивная частица считается абсолютно жесткой; в момент удара частица не разрушается;
2) частица представляет собой шар с радиусом R;
3) масса обрабатываемой заготовки по сравнению с массой частицы бесконечно велика; волновыми процессами при ударе пренебрегаем;
4) учитываем только скольжение частицы но поверхности; вращением и возможным перекатыванием частицы при ударе пренебрегаем;
5) обрабатываемая поверхность представляет собой пластическое полупространство.
Косой удар жесткой абразивной частицы по пластическому полупространству описывается системой уравнений:
где m1- масса частицы; h -глубина внедрения мм;τ—время с; N — нормальное усилие Н; F касательное усилие Н.
Контактное взаимодействие и относительное движение соударяющихся тел в значительной степени определяются характером их поверхностей. Интегральной оценкой затрат энергии, связанных с касательиым перемещением частицы, может быть коэффициент трения. Считая, что касательное усилие обусловлено только трением (F=f(N)) и силы трения не влияют на распределения давления на площади контакта, систему (3.1) можно записать в виде
В начальный момент времени
Тогда
откуда дли траектории движения частицы получим
где Со- скорость частицы в начальный момент удара; а — угол атаки рад.
Для определения массового съема материала воспользуемся правилом: при установившемся гидроабразивном износе отношение среднего объема (массы) удаленного при ударе одиночной частицы материала к среднему объему (массе) пластически выдавленного материала (ΔVд) есть величина постоянная
Коэффициент к, характеризующий связь между деформацией и износом, не зависит от времени обработки, скорости абразивных частиц и их концентрации в суспензии, а определяется только пластическими свойствами обрабатываемого материала и условиями деформирования (размерами абразивных частиц). Соотношение (3.3) получено при исследовании гидроабразивного износа частицами, внедряющимися в поверхность под углом 90°. Характер деформационных повреждений поверхности при косом ударе абразивной частицы зависит от ее угла атаки, поэтому коэффициент к будет являться функцией a и R. Выражение (3.3) запишем в виде