Jтвр – момент инерции тихоходного вала редуктора;
Jz5 – момент инерции звездочки (5);
Jz6 – момент инерции звездочки (6);
Jz7 – момент инерции звездочки (7);
Jz8 – момент инерции звездочки (8);
Jмуф – момент инерции предохранительной муфты (9);
Jz10 – момент инерции звездочки (10);
Jz11 – момент инерции звездочки (11);
Jпб – момент инерции приводного барабана(12);
Jр – момент инерции промежуточного ролика;
Jнб – момент инерции натяжного барабана;
m12 – масса участка ленты 1-2;
m23 – масса участка ленты 2-3;
m31 – масса участка ленты 3-1;
с12 – жесткость клиноременной передачи;
с23 – жесткость зубчатой передачи редуктора;
с34, с45, с56 – жесткость цепных передач;
стэк – эквивалентная жесткость тягового органа;
М – вращающий момент электродвигателя;
ω1…ω6 – угловые скорости вращения элементов кинематической цепи;
υ1…υ3 – линейные скорости движения участков цепи;
Мс1…Мс6 – статические моменты нагрузки;
Fc1…Fc3 –статические силы сопротивления движению.
В данной расчетной схеме не были учтены массы ремней клиноременной передачи, массы цепей цепной передач и жесткость предохранительной муфты.
Очевидно, что в данной расчетной схеме можно пренебречь жесткостью зубчатой передачи (с23) редуктора в связи с ее незначительностью. Так же пренебрежем жесткостью клиноременной передачи (с12) и жесткостями цепных передач (с34, с45, с56) в связи с малыми длинами ремней и цепей передач.
Очевидно, что механическую систему необходимо привести к двухмассовой системе из-за наличия податливости в тяговом органе (стэк). Однако в данном случае эти жесткости можно не учитывать по следующим причинам:
1. Конвейер имеет малую длину (15 м). Поэтому деформации упругих механических связей тягового органа будут незначительны. Согласно [3, 4] эти деформации проявляются при длине конвейера > 100 м.
2. Конвейер будет плавно разгоняться с малым ускорением а< 0.4 м/с2. Согласно [3] механические колебания в тяговом органе возникают, если конвейер разгоняется с ускорением а
0.4 м/с2.3. Т.к. внутри печи лента скользит по металлическим направляющим, то сила трения, возникающая между лентой и направляющими, будет демпфировать колебания в механической части электропривода.
На основании вышеизложенного можно сделать вывод, что данную механическую систему можно привести к одномассовой системе и податливость тягового органа можно не учитывать. Расчетная схема одномассовой системы электропривода приведена на рис.1.4.б. Определим радиус приведения:
м.Определим приведенный момент инерции по формуле:
.Анализируя предыдущую формулу можно сделать вывод, что для определения суммарного момента инерции в первом приближении можно ограничиться первыми двумя слагаемыми, те моменты инерции вращающихся масс после редуктора будут малы из-за большого передаточного числа редуктора. Перепишем формулу (1.1) в виде:
. (1.2)Т.к. редуктор и электродвигатель пока не выбраны, то суммарный момент инерции будет определен ниже.
2. ВЫБОР СИСТЕМЫ ЭЛЕКТРОПРИВОДА И АВТОМАТИЗАЦИИ
2.1 Расчет нагрузок механизма установки и построение нагрузочной диаграммы
2.1.1 Расчет нагрузок механизма и предварительный выбор редуктора
Широкая механизация и автоматизация производственных процессов различных отраслей народного хозяйства, как правило, связаны с механизацией и автоматизацией вспомогательных операций транспортировки руды, топлива, сырья, деталей машин, кормов, продуктов и т. д. Все большее применение для указанных целей находят транспортные механизмы непрерывного действия.
Механизмы непрерывного транспорта проще по своему устройству и эксплуатации, чем такие транспортные средства, как краны и подъемники, имеющие циклический характер нагрузки. По количеству перемещаемых грузов и длине трасс механизмы непрерывного транспорта часто могут успешно соревноваться с автомобильным и железнодорожным транспортом. Можно отметить, например, что в некоторых странах развитие конвейеростроения и канатных дорог превосходит по темпам развитие краностроения [4]. Помимо перемещения грузов, указанные механизмы могут быть использованы для перевозки пассажиров.
Наиболее распространенными механизмами непрерывного транспорта являются конвейеры различных типов, конструкция которых определяется главным образом характером перемещаемых грузов, весом и скоростью их движения. Среди конвейеров предприятий пищевой промышленности чаще других можно встретить ленточные конвейеры.
Основной конструктивной частью механизмов непрерывного транспорта и, в частности, любого конвейера является замкнутый, непрерывно движущийся в процессе работы тяговый орган, который выполняется из ленты специального изготовления (текстильной, прорезиненной, стальной и т. п.), цепей или канатов. Применение той или иной конструкции тягового органа обусловливается не только характером перемещаемого груза, но и условиями окружающей среды, в которой работает механизм. Тяговый орган обычно приводится в движение через ведущие барабаны, звездочки, многогранные блоки и подобные им устройства посредством электрических двигателей.
При движении конвейера приводной двигатель должен преодолевать статическую нагрузку, обусловленную силами трения во всех движущихся элементах, а также составляющую силы тяжести транспортируемого груза на наклонных участках конвейера. Силы трения возникают в подшипниках вращающих элементов, в местах контакта роликов и катков с опорой, в тяговом элементе при его изгибах и вследствие значительной протяженности конвейера и большого количества движущихся элементов составляют значительную часть суммарной статической нагрузки, а для горизонтальных конвейеров определяют всю статическую нагрузку привода. Поэтому расчеты сил трения при проектировании электропривода конвейеров следует выполнять весьма тщательно, так как именно эти силы определяют необходимую мощность и количество приводных двигателей.
Силы сопротивления движению конвейера можно разделить на две категории: силы не зависящие от натяжения тягового элемента, и силы зависящие от натяжения. Первые возникают на прямолинейных горизонтальных и наклонных участках и распределены по участку равномерно. Вторые возникают на участках изгиба тягового элемента и сосредоточены в рамках дуги этого участка.
Расчет фрикционного привода основан на решении, полученном еще Эйлером для неупругой гибкой нити. Впоследствии теория передачи силы трения была уточнена Н. П. Поповым и Н. Е. Жуковским [5]. Оба ученых независимо друг от друга и почти одновременно рассмотрели взаимодействие блока с гибкой нитью, обладающей определенной упругостью.
Общая схема конвейерной линии представлена на рис. 2.1
Расчет нагрузок механизма и предварительный выбор мощности электродвигателя будем производить по методике, изложенной в [3]. Исходные данные приведены в табл. 2.1.
Таблица 2.1.
Производительность, П, кг/ч | 642 |
Масса погонного метра ленты, mл, кг | 18.2 |
Угол обхвата приводного барабана, α т, рад | 2.967 |
Угол загрузки, β, рад | 0.174 |
Коэффициент трения, μ | 0.35 |
Коэффициент сопротивления на участках изгиба, си | 0,6 |
Коэффициент сопротивления на прямолинейном участке, сп | 0,25 |
Допустимое ускорение, адоп , м/с2 | 0,4 |
Масса 1 кг транспортируемого груза в соответствии с заданной производительностью:
мг=
= =10.89 кг.Коэффициенты сопротивления движению на всех участках сгиба примем равными:
ки1=ки2=1+си=1+0.6=1.6.
Находим массы участков конвейера:
m12=(mл+mг)*l12=(18.2+10.8)*1.7=48.9 кг,
m23=(mл+mг)*l23=(18.2+10.8)*13.6=393.6 кг,
m31=mл*l31=18.2*15.3=277.7 кг.
Расчетная суммарная масса:
m∑=m12*ки1*ки2+m23*ки2+m31=1.62*48.9+1.6*393.6+277.7=1035.1 кг.
Рассчитаем силы сопротивления движению на прямолинейных участках:
ΔF12=(gл+gг)*l12*(сп*cosβ+sinβ)=(18.2*10.8)*9.81*1,7*(0,25*cos0.174+ sin0.174)=205.4 H,
ΔF23=(gл+gг)*l23*сп=(18,2+10,8)*9,81*13,6*0,25=965,3 H,
ΔF31=gл*l31*сп=18,2*15,3*0,25=681,1 Н.
Расчетное результирующее усилие на прямолинейных участках:
ΔFп=ки1*ки2*ΔF12+ки2*ΔF23+ΔF31=1.62*205,4+1,6*965,3+681,1=2751,4 Н.
Минимальное допустимое натяжение в точке сбегания ленты с приводного барабана из условия Эйлера:
Тсбmin=
= =11952.7 H.Так как при определении м∑ не учитывались массы барабанов и опорных роликов, то Тсб следует принять с некоторым запасом относительно значения Тсбmin:
Тсб=кзап* Тсбmin=1,4*11952.7=16733.7 Н.
Определим натяжение в точке набегания на приводной барабан:
Тнб=ки1*ки2*Тсб+ΔFп=1.62*16733.7+2751.4=45589.8 Н.