В современном поточном производстве работа нескольких конвейеров может объединяться общим производственным процессом. В этом случае движения отдельных конвейеров должны быть строго согласованы между собой по скорости. Такая задача возникает, например, когда различные изделия после необходимых технологических операций на отдельных конвейерных линиях должны встречаться на сборочном конвейере в точном позиционном соответствии друг с другом. К электроприводам таких конвейеров предъявляются требования согласованного вращения.
Важным общим требованием, предъявляемым к электроприводам механизмов непрерывного транспорта, является обеспечение платности пуска и торможения с надежным ограничением ускорения и рывка, а также максимального момента двигателя и его производной [3]. Для канатных и ленточных конвейеров большой протяженности это требование обусловлено наличием больших поступательно движущихся масс, приведенный момент инерции которых может в 10-20 раз превышать момент инерции двигателей, и значительной податливостью тянущих канатов и транспортерной ленты. Большие маховые массы установки увеличивают возможность пробук-совывания приводных барабанов и шкивов относительно лент и канатов при пуске. Резкое приложение момента при наличии упругих механических связей вызывает механические колебания при пуске, в результате чего в ленте или канате возникают дополнительные динамические усилия. Требование плавности пуска и замедления остается в силе и для установок с коротким тяговым элементом. В одних случаях ограничение ускорения и рывка до требуемых норм диктуется условиями транспортирования людей (эскалаторы, канатные дороги), в других случаях — условием надежного сцепления транспортируемых изделий с лентой (ленточные конвейеры) или уменьшением раскачивания люлек и кабин (подвесные конвейеры).
На основании вышеизложенных рассуждений и описания технологического процесса сформулируем требования к электроприводу конвейера пода и системе автоматизации печи.
1. Электропривод должен обеспечить заданный диапазон регулирования скорости движения конвейера (D=6).
2. Система управления электроприводом должна обеспечить коррекцию скорости движения конвейера в зависимости от температуры во второй зоне пекарной камеры.
3. Электропривод должен обеспечить плавный разгон (торможение) конвейера с допустимым ускорением (замедлением), дабы избежать механических колебаний в тяговом органе (а доп=0.4 м/с2 ).
4. Электропривод должен обеспечить запас пускового момента для преодоления момента трогания – (1.8÷2.5)М ном.
5. В результате модернизации кинематическая схема электропривода должна претерпеть минимум изменений, чтобы уменьшить капитальные работы, в связи с модернизацией привода.
6. Т.к. установка работает в длительном режиме работы на всем диапазоне регулирования скорости движения, то электропривод должен обеспечить регулирование потребляющей мощности из сети, т.е. быть энергоэкономичным.
7. Т.к. электропривод работает в длительном режиме работы, то высокие требования к времени разгона и торможения не предъявляются.
8. Система автоматизации должна обеспечить контроль и регулирование температуры по зонам пекарной камеры.
9. Система управления электроприводом должна обеспечить исключение аварийных режимов для электропривода.
10. Электропривод должен быть удобен и гибок в управлении.
11. Система автоматизации должна обеспечить четкие действия схемы управления установкой при нормальном и аварийном режимах работы.
12. Система автоматизации должна быть простой и надежной в эксплуатации.
13. Система автоматизации и электропривод должны иметь минимальные размеры и стоимость.
14. Система автоматизации и электропривод должны соответствовать требованиям, предъявляемым ПУЭ и правилами пожарной безопасности.
2.4. Патентно–информационный поиск по объекту проектирования
1. Экономичный электропривод для Европы [9].
По данным комиссии ЕС Европа почти на 10 лет отстает от Северной Америки по применению двигателей (Д) с высоким КПД. Если бы все Д имели КПД, как у лучших кострукций, то необходимость в электроэнергии сегодня в Европе снизилась бы на 3000 МВт, расходы – на 1 млн. долларов и выбросы СО2 – на 13.4 млн.т. Если бы на всех насосах был установлен регулируемый ЭП, то эти цифры утроились бы. По данным ЕС широкое распространение Д с высоким КПД в 2010 году сэкономило бы в промышленном секторе еще 9.6 Т∙Вч. Высказано мнение, что КПД ЭП в большей степени зависит от системы управления. Представитель компании АВВ заметил, что улучшение технологии производства Д позволяет поднять их КПД без заметного удорожания Д и что компания выпускает Д с высоким КПД как стандартные. Ученые Италии разработали компьютерную программу оптимизации конструкции Д. Их работы показывают, что эксплуатационные расходы на Д оптимальной конструкции 1.5 кВт снижаются на 36%, 18.5 кВт – на 19% без повышения затрат на их производство. Рассмотрены пути внедрения Д с высоким КПД в Европе с помощью законодательства, агитации и др. методов.
2. Электропривод в будущем [9].
По имеющимся оценкам сегодня менее 5% ЭД управляется инвертором (И), даже среди недавно установленных ЭД эта цифра не превышает 10%. Для широкого распространения регулируемого электропривода (РЭП), по мнению представителей компании Hitachi (Япония), необходимо радикально изменить цены и конструкцию РЭП. В будущем РЭП регуляторы должны быть разделены на модульные элементы, которые комбинируются в зависимости от применения. С помощью обычных микросхем можно будет сформировать регулятор для специального назначения: упаковки, перекачки, вентиляции или производства стали. Маломощные РЭП должны встраиваться в инструмент или оборудование и их цена не должна превышать 10 ф.с. Не только в компании Hitachiсчитают, компания Mitsubishi уже продает встраиваемые И для производителей оборудования, причем И серии SC – А мощностью 200 и 400 Вт стоят меньше 80 ф.с. Отмечена большая экономия, которую может дать широкое применение РЭП в Европе; но если не применять мер по уменьшению засорения сети гармониками, стоимость фильтров будет больше стоимости самих И.
3. Применение преобразователя частоты VARISPEED – 676H5 для электропривода ленточного конвейера нового типа [9].
Описан многодвигательный ЭП системы ПЧ – АД ленточных конвейеров, выполненный на ПЧ VS – 67H5 / из серии VARISPEED. ШИМ-инвертор выполнен на IGBТ – приборах. Рассмотрено несколько вариантов исполнения конвейеров и их ЭП. Описана система управления, выполненная на цифровых процессорах и центральной ЭВМ, связанную в единую информационно-управляющую сеть с дисплеями. Системы могут иметь различное исполнение в зависимости от того, какой агрегат или технологическая линия обслуживаются данным конвейером.
4. Защита и техническая диагностика тиристорного ЭП ленточного конвейера [9].
В настоящее время конвейерные линии угольных шахт практически полностью автоматизированы. При этом автоматизация сводится к тому лишь к автоматическому запуску и аварийному останову. Следующим этапом автоматизации должно являться регулирование скорости движения ленты, что при неравномерном грузопотоке из забоев устранит недогрузы конвейера и его холостой пробег за счет автоматической стабилизации погонной нагрузки. Для регулирования скорости движения ленты наиболее целесообразным, в настоящее время, является тиристорный ЭП на основе АВК. С целью повышения надежности АВК рассмотрена структура микропроцессорного устройства, предназначенного для защиты и диагностирования ЭП на основе АВК.
5. Печь БН-25.[10]
Она состоит из восьми секций длиной 1.5 м каждая. Пекарная камера печи на четыре тепловые зоны. Обогрев осуществляется при помощи трубчатых электронагревателей ТЭНов ) мощностью 1.8 кВт каждый. Мощность электронагревателей, размещенных над сетчатым подом, составляет 91,8 кВт, а под ним— 59,4 кВт.
Для обогрева первой зоны установлено 18 верхних и 12 нижних электронагревателей; второй— 15 верхних и 9 нижних; третьей — 12 верхних и 6 нижних и четвертой — 6 верхних и 6 нижних.
Устройство для увлажнения расположено в начале печи и состоит из четырех перфорированных труб с отверстиями 2,5 мм. Трубы установлены на расстоянии 220 мм до пода с шагом 130 мм. Над трубами размещен колпак шириной 2,67 м и длиной 0,56 м. Пароувлажнительное устройство отделено от пекарной камеры поворотной заслонкой.
По всей длине печи, в верхней ее части, смонтирован металлический вентиляционный канал диаметром 160 мм.
Привод печи осуществляется от трехскоростного электродвигателя мощностью 0,8, 1,0 и 1,2 кВт с частотой вращения соответственно 750, 1500 и 3000 об/мин. Продолжительность выпечки в интервале каждого диапазона регулируется вариатором скорости.
6. Печь БН-50 [10].
Она состоит из шестнадцати соединенных между собой секций длиной по 1500 мм. Каждая пекарная камера изолирована стекловатой толщиной с боков 350, снизу — 245 и сверху — 450 мм. Обогрев осуществляется трубчатыми электронагревателями мощностью 2 кВт каждый. В верхней части над сетчатым подом размещено 87 электронагревателей, в нижней — 72. Печь разбита на четыре тепловые зоны с независимым верхним и нижним обогревом.
7. ПечиХПС-25 и ХПС-40 [ ].
Это печи тоннельного типа с электрообогревом предназначены для выпечки широкого ассортимента хлебобулочных изделий в районах с достаточными ресурсами дешевой электроэнергии. Печи ХПС-25 и ХПС-40 разработаны ВНИИХПом и изготовляются на базе печей ПХС-25 м и ПХС-40м.