Колодцы оборудованы керамическими рекуператорами из восьмигранных карбошамотных трубок, аналогичных тем, которые применяют на нагревательных колодцах с отоплением из центра подины. Поперечные размеры нагревательных колодцев с двумя верхними горелками близки к размерам колодцев с отоплением из центра пода, но глубина их больше (4,2 – 4,4 м). Отсутствие горелки в центре пода позволяет увеличить садку металла, однако прироста производительности это не даёт, так как увеличение садки приводит к увеличению времени нагрева металла.
Следует отметить, что колодцы с двумя верхними горелками по основным показателям – производительности, качеству нагрева, расходу топлива, тепловой нагрузке – схожи с колодцами, отапливаемыми из центра пода. Применение жидкого шлакоудаления на колодцах с двумя верхними горелками весьма затруднено тем, что наибольшая температура достигается в верхней части ячейки, внизу температура значительно меньше и сварочный шлак не жидкотекуч.
Определение количества и планировка пролёта нагревательных колодцев. Время нагрева слитков является главным фактором, от которого зависит производительность нагревательных печей. В нагревательных колодцах при нагреве холодных слитков применяют трёхступенчатый режим нагрева, состоящий из периодов предварительного нагрева, ускоренного нагрева и выдержки. В течении периода предварительного нагрева скорость повышения температуры металла поддерживается таким образом, чтобы в нём не возникли чрезмерные температурные напряжения. После достижения 500 – 550 ºС, когда металл уже приобретает необходимые пластические свойства начинается период ускоренного нагрева, который заканчивается после того, как поверхность слитков достигнет конечной температуры нагрева. В течение последующей выдержки практически при постоянной температуре поверхности происходит выравнивание температуры по сечению слитка.
Необходимо отметить, что увеличение садки металла обычно приводит к увеличению времени нагрева металла, поэтому существует оптимальная садка, при которой обеспечивается наивысшая производительность колодцев.
Потребное число групп нагревательных колодцев можно определить, если известны следующие величины:
τп – время посадки слитков, ч;
τн – время нагрева слитков, ч;
τв – время выдержки слитков, ч;
τш – время уборки шлака, ч;
n – число ячеек в одной группе, шт.;
G – масса садки одной ячейки, т;
m – коэффициент, учитывающий простои колодцев на ремонт. Обычно простои колодцев составляют около 15 %, поэтому величину коэффициента m принимают равной 0,85.
Средняя производительность одной группы колодцев Р, т/ч, при нагреве одинаковых слитков, таким образом, будет равна
Если в нагревательных колодцах нагревают слитки различной массы, марок стали и температуры посада, то их среднюю производительность можно определить по формуле
где a,b,c,…,n – доля слитков данной массы, марки стали и температуры посада в программе нагревательных колодцев;
P1, Р2, Р3,…, Рn – производительность группы колодцев при нагреве слитков одного типа, подсчитанная по формуле.
Зная часовую производительность обжимного стана и среднюю часовую производительность группы колодцев, легко определить необходимое число группы колодцев.
Планировка пролётов нагревательных колодцев. При увеличении годовой производительности обжимных станов, которая составляет 4 – 5 млн. т/год часовая производительность будет измеряться величиной 600 т/ч, а прокатка одного слитка будет занимать около 50 с. При таком темпе прокатки все операции по подаче слитка к стану должны выполнятся за отрезок времени, не превышающий 50 с. К этим операциям относятся следующие: захват слитка краном, перенос слитка к слитковозу и установка на нём слитка, разгон и пробег слитковоза, а также торможение слитковоза перед приёмным рольгангом и перегрузка на него слитка.
Наиболее распространённая схема планировки с продольным расположением нагревательных колодцев (рисунок 153). Причём применяют один или два слитковоза (рисунок 153, а). При такой схеме время пробега слитковоза составляет важную часть общего времени, затрачиваемого на подачу одного слитка. Для уменьшения этого времени при приблизительно постоянной скорости движения слитковоза около 7 м/с целесообразно применять такие нагревательные колодцы, которые обеспечивают наибольшую производительность на 1 м длины пролёта. Такими конструкциями являются колодцы с одной верхней горелкой.
Однако применение такой схемы планировки вследствие длительного пути пробега слитковоза не позволяет обеспечить слитками обжимные станы производительностью более 3 млн. т/год. Для высокопроизводительных станов разработана схема продольного расположения отделения нагревательных колодцев с несколькими слитковозами, движущимися по кольцевому пути (рисунок 153, б). Эта схема может обеспечить любой цикл прокатки. Поскольку путь слитковоза кольцевой, то для подобной схемы планировки производительность нагревательных колодцев в расчёте на 1 м длины пролёта решающего значения уже иметь не будет. Выбор конструкции колодцев определяется качеством нагрева металла и экономическими соображениями.
Регенеративные колодцы. Колодец снабжён двумя парами регенераторов, причём ближайший к рабочему пространству регенератор обязательно газовый. Газ и воздух подогревают примерно до 800 ºС. Колодец работает реверсивно. Сначала топливо и воздух поступают с одной стороны и, нагреваясь в регенераторах, попадают в рабочее пространство. Образовавшиеся дымовые газы проходят через другую пару регенераторов и отдают своё тепло огнеупорной насадке. Затем происходит перекидка клапанов, и весь цикл повторяется в обратном направлении. Металл нагревается до 1200 – 1250 ºС, температура в рабочем объёме колодца составляет 1350 – 1400 ºС.
Общая тепловая мощность подобных колодцев составляет 20,95 – 23,045 ГДж/ч, причём на долю горения топлива приходится около 65 %, на долю тепла подогрева воздуха и газа – примерно 35 %. Нагревательные колодцы подобного типа могут работать на чистом доменном газе и на смеси коксового и доменного газов.
В регенеративных нагревательных колодцах в каждой группе по четыре ячейки. Большинство нагревательных колодцев работают на слитках горячего посада. При этом температура горячего посада обычно составляет около 750 ºС, но иногда достигает и 850 – 870 ºС. Удельная доля слитков горячего посада по отношению к массе всех слитков достигает 95 %.
Производительность группы регенеративных колодцев рассматриваемой конструкции при 95 % горячего посада с температурой около 780 ºС составляет 300 тыс. т/год, а удельный расход тепла 1131,3 кДж/кг.
В регенеративных колодцах горение топлива развивается в нижней части колодца, поэтому температура около подины достаточно высокая, и надёжно осуществляется жидкое шлакоудаление.
В нагревательных колодцах регенеративного типа крайне несовершенна система сжигания топлива, что влечёт за собой существенные недостатки. Горение топлива практически начинается над газовыми регенеративными насадками, через которые подаётся топливо, протекает в рабочем пространстве и заканчивается в противоположных насадках. Это приводит к неравномерности нагрева садки металла, так как слитки, расположенные ближе к регенераторам, нагреваются значительно быстрее, чем слитки в средней части рабочего пространства. Второй существенный недостаток вызван тем, что для автоматизации теплового процесса печи всегда необходимо правильно выбрать в рабочем пространстве такую точку, по изменению температуры которой можно строить процесс автоматизации. В регенеративных колодцах надёжно выбрать такую точку невозможно, поскольку в результате перекидки клапанов и плохого смешения газа и воздуха температура может всё время изменяться по всей длине рабочего объёма колодца, причём возможны и случайные колебания температур.
Печи с выдвижным подом. Иногда для нагрева слитков применяют печи с выдвижным подом (рисунок 154). Металл в подобной печи может нагреваться до 1100 – 1300 ºС или догреваться от 600 до 1300 ºС. В качестве топлива применяют мазут, генераторный или коксодоменный газ. Печь оборудована регенераторами для подогрева воздуха до 600 – 800 ºС. Объём регенеративной насадки на 1 м² площади пода составляет 0,75 – 1,0 м³.
Для сжигания газа применяют горелки низкого давления, расположенные в два ряда на продольных стенах печи в шахматном порядке. Масса садки колеблется от 120 до 200 т. Удельный расход тепла при нагреве металла от 0 до 1200 ºС составляет 4600 – 5030 кДж/кг, а при догреве от 600 до 1100 ºС он равен 2300 – 3000 кДж/кг.
В подобных печах значительное количество тепла расходуется на нагрев кладки, поэтому пусковая тепловая мощность печи должна составлять 670 – 1173 ГВт на 1 м² площади пода печи.
Выкатная подина печи перемещается на специальных катках, соединённых в две обоймы. Поскольку подина перемещается по каткам быстрее, чем сами катки, длина обоймы должна быть в 1,5 раза больше длины подины.