Смекни!
smekni.com

Компрессорные и насосные установки (стр. 3 из 3)

Процесс, при котором работа переходит в теплоту без каких либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

Реакторную установку можно представить в виде тепловой машины, в которой осуществляется некий термодинамический цикл.

Пароводяная смесь, образовавшаяся в результате передачи тепловой энергии воде в активной зоне поступает в Барабан – сепаратор где происходит разделение пара и воды. Пар направляется в паровую турбину, где расширяясь адиабатно, совершает работу. Из турбины отработавший пар направляется в конденсатор. Там происходит отдача теплоты охлаждающей воде, проходящей через конденсатор. Вследствие этого пар полностью конденсируется. Полученный конденсат непрерывно засасывается насосом из конденсатора, сжимается и направляется вновь в барабан сепаратор.

Конденсатор играет двоякую роль в установке:

Во-первых, он имеет паровое и водяное пространство разделенные поверхностью, через которую происходит теплообмен между отработавшим паром и охлаждающей водой. Поэтому конденсат пара может быть использован в качестве идеальной воды, не содержащей растворенных солей.

Во-вторых, в конденсаторе вследствие резкого уменьшения удельного объема пара при его превращении в капельножидкое состояние наступает вакуум, который будучи поддерживаемым в течение всего времени работы установки, позволяет пару расширяться в турбине еще на одну атмосферу (Рк около 0,04 - 0,06 бар) и совершать за счет этого дополнительную работу.

Опишите основные виды теплопередачи, дайте понятие теплопроводности, вычертите схемы

Существуют три основных вида теплопередачи:

- теплопроводность

- конвекция

- лучистый теплообмен. Теплопроводность - это процесс распространения теплоты между соприкасающимися телами или частями одного тела с разной температурой.

Температурное поле - совокупность температур во всех точках тела для данного момента времени. Стационарное температурное поле, или стационарный температурный режим, характеризуется постоянством температуры с течением времени. Для перехода от нестационарного режима (нагрев или охлаждение тела) к стационарному необходимо время для достижения постоянной температуры Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное). Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения DТ/Dx разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м2) и коэффициента теплопроводности материала.

где q – тепловой поток, k – коэффициент теплопроводности, а A – площадь поперечного сечения. Это соотношение называется законом теплопроводности Фурье; знак «минус» в нем указывает на то, что теплота передается в направлении, обратном градиенту температуры. Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из

величин – коэффициент теплопроводности, площадь или градиент температуры.

Для здания в зимних условиях последние величины практически постоянны, а поэтому для поддержания в помещении нужной температуры остается уменьшать теплопроводность стен, т.е. улучшать их теплоизоляцию. В таблице представлены коэффициенты теплопроводности некоторых веществ и материалов.

Из таблицы видно, что одни металлы проводят тепло гораздо лучше других, но все они являются значительно лучшими проводниками тепла, чем воздух и пористые материалы.


Теплопроводность некоторых веществ и материалов

Вещества и материалы Теплопроводность,Вт/(мD К)
Металлы
Алюминий 205
Бронза 105
Висмут 84
Вольфрам 159
Железо 67
Золото 287
Кадмий 96
Магний 155
Медь 389
Мышьяк 188
Никель 58
Платина 70
Ртуть 7
Свинец 35
Цинк 113
Другие материалы
Асбест 0,08
Бетон 0,59
Воздух 0,024
Гагачий пух (неплотный) 0,008
Дерево (орех) 0,209
Магнезия (MgO) 0,10
Опилки 0,059
Резина (губчатая) 0,038
Слюда 0,42
Стекло 0,75
Углерод (графит) 15,6

Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества. Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление,

называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств – от приборов микроэлектроники до линий электропередачи и больших электромагнитов.

Рассмотрим стационарный процесс теплопроводности через цилиндрическую стенку длиной L, внутренним радиусом r1, наружным радиусом r2 , с

температурой внутренней поверхности t'ст и наружной t '' ст. Коэффициент теплопроводности материала стенки (рис.4.1).

Рисунок 4.1 - Схема теплопроводности

Для рассматриваемого случая температура меняется только по толщине

стенки, т.е. в направлении радиуса (внутренняя и наружная стенки имеют разную, но постоянную температуру по всей стенке, т.е. являются изотермными).


Используемая литература

1. Рахмилевич 3.3. Радзин И.М., Холодильные компрессоры. Справочник, М., 1981

2. Киселев Г.Ф., Компрессорные установки в химической промышленности, М., 1977

3. Скворцов Л.C., Рачинский В.А. и др. Компрессорные и насосные установки.

-М.: Машиностроение

4. Земанский М. Температуры очень высокие и очень низкие. М., 1968

Смородинский Я.А. Температура. М., 1981

5. Черкасский В.М. Насосы, вентиляторы, компрессоры. – М.: Энергоатомиздат, 1984.