Процесс, при котором работа переходит в теплоту без каких либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.
Реакторную установку можно представить в виде тепловой машины, в которой осуществляется некий термодинамический цикл.
Пароводяная смесь, образовавшаяся в результате передачи тепловой энергии воде в активной зоне поступает в Барабан – сепаратор где происходит разделение пара и воды. Пар направляется в паровую турбину, где расширяясь адиабатно, совершает работу. Из турбины отработавший пар направляется в конденсатор. Там происходит отдача теплоты охлаждающей воде, проходящей через конденсатор. Вследствие этого пар полностью конденсируется. Полученный конденсат непрерывно засасывается насосом из конденсатора, сжимается и направляется вновь в барабан сепаратор.
Конденсатор играет двоякую роль в установке:
Во-первых, он имеет паровое и водяное пространство разделенные поверхностью, через которую происходит теплообмен между отработавшим паром и охлаждающей водой. Поэтому конденсат пара может быть использован в качестве идеальной воды, не содержащей растворенных солей.
Во-вторых, в конденсаторе вследствие резкого уменьшения удельного объема пара при его превращении в капельножидкое состояние наступает вакуум, который будучи поддерживаемым в течение всего времени работы установки, позволяет пару расширяться в турбине еще на одну атмосферу (Рк около 0,04 - 0,06 бар) и совершать за счет этого дополнительную работу.
Опишите основные виды теплопередачи, дайте понятие теплопроводности, вычертите схемы
Существуют три основных вида теплопередачи:
- теплопроводность
- конвекция
- лучистый теплообмен. Теплопроводность - это процесс распространения теплоты между соприкасающимися телами или частями одного тела с разной температурой.
Температурное поле - совокупность температур во всех точках тела для данного момента времени. Стационарное температурное поле, или стационарный температурный режим, характеризуется постоянством температуры с течением времени. Для перехода от нестационарного режима (нагрев или охлаждение тела) к стационарному необходимо время для достижения постоянной температуры Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью; при достаточно высоких температурах в твердых телах его можно наблюдать визуально. Так, при нагревании стального стержня с одного конца в пламени газовой горелки тепловая энергия передается по стержню, и на некоторое расстояние от нагреваемого конца распространяется свечение (с удалением от места нагрева все менее интенсивное). Интенсивность теплопередачи за счет теплопроводности зависит от градиента температуры, т.е. отношения DТ/Dx разности температур на концах стержня к расстоянию между ними. Она зависит также от площади поперечного сечения стержня (в м2) и коэффициента теплопроводности материала.
где q – тепловой поток, k – коэффициент теплопроводности, а A – площадь поперечного сечения. Это соотношение называется законом теплопроводности Фурье; знак «минус» в нем указывает на то, что теплота передается в направлении, обратном градиенту температуры. Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из
величин – коэффициент теплопроводности, площадь или градиент температуры.
Для здания в зимних условиях последние величины практически постоянны, а поэтому для поддержания в помещении нужной температуры остается уменьшать теплопроводность стен, т.е. улучшать их теплоизоляцию. В таблице представлены коэффициенты теплопроводности некоторых веществ и материалов.
Из таблицы видно, что одни металлы проводят тепло гораздо лучше других, но все они являются значительно лучшими проводниками тепла, чем воздух и пористые материалы.
Теплопроводность некоторых веществ и материалов
Вещества и материалы | Теплопроводность,Вт/(мD К) |
Металлы | |
Алюминий | 205 |
Бронза | 105 |
Висмут | 84 |
Вольфрам | 159 |
Железо | 67 |
Золото | 287 |
Кадмий | 96 |
Магний | 155 |
Медь | 389 |
Мышьяк | 188 |
Никель | 58 |
Платина | 70 |
Ртуть | 7 |
Свинец | 35 |
Цинк | 113 |
Другие материалы | |
Асбест | 0,08 |
Бетон | 0,59 |
Воздух | 0,024 |
Гагачий пух (неплотный) | 0,008 |
Дерево (орех) | 0,209 |
Магнезия (MgO) | 0,10 |
Опилки | 0,059 |
Резина (губчатая) | 0,038 |
Слюда | 0,42 |
Стекло | 0,75 |
Углерод (графит) | 15,6 |
Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества. Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление,
называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств – от приборов микроэлектроники до линий электропередачи и больших электромагнитов.
Рассмотрим стационарный процесс теплопроводности через цилиндрическую стенку длиной L, внутренним радиусом r1, наружным радиусом r2 , с
температурой внутренней поверхности t'ст и наружной t '' ст. Коэффициент теплопроводности материала стенки (рис.4.1).
Рисунок 4.1 - Схема теплопроводности
Для рассматриваемого случая температура меняется только по толщине
стенки, т.е. в направлении радиуса (внутренняя и наружная стенки имеют разную, но постоянную температуру по всей стенке, т.е. являются изотермными).
Используемая литература
1. Рахмилевич 3.3. Радзин И.М., Холодильные компрессоры. Справочник, М., 1981
2. Киселев Г.Ф., Компрессорные установки в химической промышленности, М., 1977
3. Скворцов Л.C., Рачинский В.А. и др. Компрессорные и насосные установки.
-М.: Машиностроение
4. Земанский М. Температуры очень высокие и очень низкие. М., 1968
Смородинский Я.А. Температура. М., 1981
5. Черкасский В.М. Насосы, вентиляторы, компрессоры. – М.: Энергоатомиздат, 1984.