Смекни!
smekni.com

Производство металлов и их сплавов (стр. 6 из 9)

Титан давно и широко используется как хороший раскислитель и легирующая добавка в стали и сплавы цветных металлов.

Восстановление тетрахлорида титана магнием

Восстановление тетрахлорида титана ТiСl4 проводят периодически в цилиндрических стальных герметичных ретортах диаметром от 850 до 1500 мм и высотой от 1800 до 3000 мм. Такой объем реторты позволяет получать за одну операцию до 1500 кг титановой губки.

Реторты устанавливают вертикально обычно в электрическую печь сопротивления. Сверху реторта закрыта крышкой, имеющей патрубки для загрузки магния, подачи Т1С14 откачки воздуха и подвода аргона (рис. 168).

После установки реторты в печь и откачки из нее воздуха она заполняется осушенным аргоном и нагревается до 740—800° С, после чего в нее заливают жидкий магний и начинают подачу жидкого тетрахлорида титана. Процесс получения титана можно упрощенно представить следующим уравнением реакции:

ТiСl4(газ) + 2Мg(ж) = -2МgС12(ж) + Тi(тв) + 935 000 Дж (223 000 кал)

После интенсивного развития реакции выключают нагрев и поддерживают температуру в пределах 750—850° С. Титан выделяется в реторте в виде хорошо развитых дендритов, которые получили название титановой губки.

Титановая губка дробится и тщательно сортируется. Наиболее чистая губка идет на переплавку; низкосортная, содержащая включения хлоридов, брикетируется и используется как раскислитель стали в черной металлургии. Для получения из титана и его сплавов ответственных изделий очень важна его хорошая пластичность и свариваемость, а также термостойкость..

Получение титана высокой чистоты

Обычная чистота титана, получаемого переплавкой губки, составляет 99,6—99,7°о, однако требуется и более чистый металл, содержащий 99,9 % титана и выше.

Чистый титан получают в небольших количествах переработкой губки иодидным способом, использующим обратимость реакции

Тi + 2I2=ТiI4

При температуре 100—200° С реакция протекает вправо, а при 1300-1400°С- -влево.

Губку загружают в кольцевое пространство между стенкой реторты и молибденовой сеткой (рис. 171). На молибденовых держателях зигзагообразно закрепляют проволоку из чистого титана диаметром 3—4 мм и длиной около 10 м. После герметичного укрепления крышки и откачки воздуха до остаточного давления 0,1—0,01 Па (10~4—10~5 мм рт. ст.) реторту помещают в термостат с температурой 100—200° С и внутри ее особым приспособлением разбивают ампулу с иодом. Пары иода, заполняя все пространство реторты, реагируют с титановой губкой и стружкой, образуя пары йодистого титана.

Титановую проволоку накаливают до 1300—1400° С, пропуская через нее ток. На раскаленной проволоке эти пары разлагаются, образуя кристаллы чистого титана, и освобождают иод, который вновь реагирует с титановой губкой, нагретой до 100—200° С.

Общие сведения о магнии

Магний — серебристо-белый металл. Важнейшее его физическое свойство—малая плотность, равная 1,738 г/см3 (при 20ºС).

Природный магний состоит из смеси трех стабильных изотопов. Причем искусственный изотоп Мg28 с полураспадом в 21,3 ч может быть применен в качестве радиоактивного индикатора. Кристаллы магния обладают компактной гексагональной структурой.

Магний в виде слитков или изделий не огнеопасен. Возгорание магния может произойти лишь при температуре, близкой к точке его плавления (651° С) или после расплавления, если он не изолирован от кислорода воздуха. Магний не магнитен и не искрит при ударах или трении.

Предел прочности и другие механические свойства магния очень зависят от его чистоты и способа приготовления образца.

В настоящее время для получения магния применяют: магнезит, доломит, карналлит, а также морскую воду и отходы ряда производств.

Магнезит — углекислый магний МgСО3. Природный минерал магнезит обычно содержит карбонат кальция, кварц, а также примеси других минералов, включающих окислы алюминия и железа.

Для производства магния применяют только чистый каустический магнезит, полученный по реакции МgСО3 = МgО + СО, при нагревании (обжиге) природного магнезита до 700—900º С

Дoломит— горная порода, представляющая собой двойной карбонат кальция и магния МgСО3-СаСО3. Доломиты обычно содержат примеси кварца, кальцита, гипса и др. Содержание и окраска примесей определяют окраску породы. Доломит широко распространен в природе и составляет около 0,1% всех горных пород, входящих в состав земной коры. Доломит так же, как и магнезит, применяемый магниевой промышленностью, предварительно обжигают до получения смеси окислов МgО и СаО.

Карналлит МgС12 • КС1 · 6Н2О — природный хлорид магния и калия — очень гигроскопичное кристаллическое вещество, обычно окрашенное примесями в розовый, желтый или серый цвет.

Понятие об электролитическом способе получения магния

В основном магний получают электролитическим способом, важнейшими стадиями которого являются: а) получение чистых безводных солей магния; б) электролиз этих солей в расплавленном состоянии и в) рафинирование магния.

Известны варианты электролитического способа получения магния, различающиеся по составу солей, поступающих на электролиз (карналлит, хлористый магний и т. д.), и по способу получения этих солей (хлорирование магнезита, обезвоживание хлористого магния н т. п.). Электролиз проводят в расплавленных хлоридах магния, калия, натрия и кальция, так как при электролизе водных растворов его солей из-за отрицательного потенциала магния на катоде выделяется только водород. Схема электролизера для получения магния изображена на рис. 172.

Анодами служат графитные плиты 4, катодами — стальные пластины 2. Так как плотность расплавленного электролита больше, чем плотность магния в этих же температурных условиях, то выделяющийся на катоде жидкий магний, не растворяясь в электролите, в виде капель всплывает на его поверхность. На аноде выделяется газообразный хлор, который также поднимается и выбрасывается из электролита. Во избежание взаимодействия хлора и магния и короткого замыкания анода и катода расплавленным магнием вверху устанавливают перегородку /, которую принято называть диафрагмой. Во время электролиза расходуется хлористый магний, периодически вводимый в электролит.

Собирающийся на поверхности катодного пространства магнии периодически удаляют. Выделяющийся в анодном пространстве хлор отсасывают через трубы 3 и используют, например, для хлорирования окиси магния или окиси титана.

Питание ванн электролитом. В процессе электролиза идет непрерывное разложение хлористого магния, поэтому для восполнения его расхода в ванну периодически вводят свежие расплавленные хлористые соли.

Регулирование температуры. Электролиз должен протекать при температуре 690-720° С, при этом нижнего предела желательно придерживаться при питании ванн хлористым магнием, а верхнего — при питании карналлитом. В процессе электролиза необходимо наблюдать за температурой электролита, так как отклонение от нормы, особенно в сторону повышения, знач! но ухудшает показатели.

В магниевых ваннах для регулирования температуры не ме! межполюсное расстояние, как это принято при электролитнчес ком получении алюминия, а изменяют состав, а с ним и эле проводность электролита.

Извлечение магния из электролизера. Это обычно производят не реже одного раза в сутки, применяя вакуумные ковши (рис 173).

Удаление шлама. В электролит с хлористым магнием поступает и окись магния; кроме того, может протекать гидролиз электролита с образованием окиси магния. Окись магния оседает на дно электролизера, увлекая за собой другие продукты и образуя шлам.

Содержащиеся в магнии примеси можно разделить на две группы.

Первая группа — металлические примеси, попадающие в магний при его получении. Важнейшими из них являются железо, натрий и калий, которые попадают в магний в результате электролитического разложения их соединений, имеющихся в составе электролита или попавших в него с сырьем.

Вторая группа — неметаллические примеси, механически захваченные при извлечении магния из ванны. К ним относятся главным образом хлориды кальция, магния, натрия и калия, окись магния, а также нитрид и силицид магния.

Для рафинирования магния предложено много различных флюсов. В качестве примера можно привести флюс ВИ-2, содержащий 38—46% МgСl2; 32—40% KCl; 3—5% СаF2; 5—8% ВаС12, применяемый для переплавки магния, для плавки его сплавов в стационарных тиглях и в индукционных печах. Этот флюс хорошо рафинирует металл и плавится при температуре 420° С. Флюс ВИ-3 содержит обычно 34—40% МgС12; 25—36% КС1; 15—20% СаР2; 7—10% МgО; он является универсальным при плавке магниевых сплавов в выемных тиглях. При рафинировании к концу процесса по мере спокойного охлаждения металла образованный им шлак затвердевает, превращаясь в твердую корку.

Наилучшие результаты рафинирования можно получить при сублимации магния в вакууме, которая описана при очистке губчатого титана после его восстановления магнием.

Сварка, резка и пайка металлом.

Сваркой называют технологический процесс получения неразъемных соединений заготовок по средствам установления межатомных и межмолекулярных связей между свариваемыми частями.

Сварочные процессы применяют для изготовления сварных конструкций, исправления брака при отливке деталей, для восстановления поломанных, изношенных частей.

Свариваются между собой как однородные детали, так и разнородные (сталь с медью, медь с алюминием и т.д.), а также металлы с неметаллами(керамикой, стеклом). ГОСТ 19521-74 определяет три класса сварки: термический, механический и термомеханический.

· К термическому виду сварки относятся сварки плавлением. К этому виду относятся дуговая, электрошлаковая, плазменная, электроннолучевая, лазерная, газовая, термитная сварка.

· К механическому виду сварки относятся те, при которых определяющим фактором является пластическое деформирование. К механическому классу относят холодную, ультразвуковую сварку, сварку взрывом, трением.