На полноту сгорания топлива сильное влияние оказывают скорости вдувания в топку первичной смеси и вторичного воздуха. При малой скорости первичной смеси возможны выпадение из потока крупных частиц топлива и обгорание выходных патрубков горелки. Слишком большая скорость первичной смеси ухудшает условия воспламенения и увеличивает длину факела, iСкорость вторичного воздуха так же, как и первичного, выбирается в зависимости от выхода летучих w\ – 12 – 25 м/с, 12) 2=18–4–30 м/с. Круглые горелки универсальны и применимы для любого твердого топлива, но наибольшее распространение они получили для топлива с малым выходом летучих. Единичная мощность круглых горелок достигает 14 т/ч (по углю АШ).
Рис. 4.12. Схема различных круглых пылеугольных
горелка с лопаточным аппаратом
1-ствол для аэропыли; 2 – улитка первичного воздуха;
3 – улитка вторичного воздуха; 4 – рассекатель;
5 – порог; 6 – амбразура; 7 – лопаточный аппарат;
8 – мазутная форсунка; 9 – подвод воздуха к мазутной
форсунке; I– подвод пылевоздушной смеси;
II– подвод вторичного воздуха
1.5 Сепаратор пыли
Сепараторы применяются для выделения из патока пыли крупных частиц и возврата их в мельницу на домол. В зависимости от конструктивного выполнения – они бывают центробежные, гравитационные и инерционные.
Центробежные сепараторы применяются в системах с шаровыми мельницами, реже с быстроходными и среднеходными.
Центробежные смесь поступает во входной патрубок со скоростью 15–22 м/с. В сепараторе скорость падает до 2–6 м/с, а результате чего выпадают наиболее крупных частицы и по патрубок поступают обратно на домол в мельницу. Далее пылевоздушная смесь приходит по кольцевому каналу вверх и через окна поступает во внутренний конус. В окнах пыль закручивается благодаря направленности, созданной поворотными лопатками. В результате центробежных сил теряется скорость. Крупных частицы выпадают из потока и по патрубку поступают на домол. Готовая кондиционная пыль по выходной трубе направляется в пылесистему.
Гравитационные сепараторы представляет собой прямоугольную вертикальную шахту 2 из листов стали высотой от 4 до 8 м и более. Отделения крупных частиц осуществляется в шахте под действием сил тяжести. Количества воздуха, подаваемого в шахту, определяется расчетом. По расходу сушильной среды и скорости рассчитывается площадь сечения сепаратора. Размолотое топливо с сушильной средой выбрасывается билами в шахту, часть пылевоздушной среды подсасывается за счет подсоса воздуха ротором молотковой мельницы вдоль противоположной стенки обратно в мельницу.
Инерционные сепараторы применяются с молотковыми мельницами при работе на бурных углях и сланцах с тонкостью пыли R90 › 40%, а также на фрезерном торфе. На показано конструкция инерционного сепаратора. Пылевоздушная смесь поступает из мельницы вверх и после двойного поворота выходит через выходной патрубок, а крупные частицы возвращаются обратно в мельницу. Тонкость помола пыли регулируется специальными шибером. Скорость в канале применяется 4,5–7,5 м/с, в наибольшем сечении сепаратора 2–3 м/с, воздуха входном патрубке 12–18 м/с.
2. Специальная часть
2.1 Исходные данные
Расчётные характеристики топлива
По табл. 4.1 для Итатское каменное угля
Wр = 40,5% Aр =6,8% Sрор + к = 0,4% Cр=36,2%
Hр =2,6% Nр = 0,4% Oр =12,7%
Qрн =12,820 Vг =48,0
Характеристики плавкости золы: t1 = 1200
t2 =1220
t3 =1240
Приведённая зольность:
Aп = 10³ ·Aр/Qрн =103*6,8/12820=0,53 (2.1)
Приведённая влажность:
Wп = 10³ · Wр/ Qрн =103*40,5/12820=3,91 (2.2)
Приведённая сернистость:
Sп = 10³ · Sрор + к / Qрн =103*0,4/12820=0,031 (2.3)
Расчётные характеристики топки
По табл. 5.1. для топки ……ТЛЗМ-2700/3000……………….:
Коэффициент избытка воздуха на выходе из топки – αт =1,2
Тепловое напряжение площади зеркала горения – qR =1200/1300кВт/м2
Тепловое напряжение объёма топки – qV =180кВт/м3
Потеря теплоты от химической неполноты сгорания – q3 =0,5
Потеря теплоты от механической неполноты сгорания –
q4 =1
Для золы топлива, уносимая газами – αун =0,95
Коэффициенты избытка воздуха в газовом тракте установки
Присосы воздуха в отдельных элементах котельной установки согласно табл. 5.4.:
В конвективном пучке – Δαкп =0,1
В чугунном водяном экономайзере – Δαэ =0,1
В золоуловителе – Δαзу =0,05
В стальных газопроводах длиной L≈10 м – Δαг =0,01
Коэффициенты избытка воздуха:
За котлом (перед экономайзером) – αк = α'э = αт + Δαкп =1,3 (2.4)
За экономайзером – α«э = α'э + Δαэ =1,4 (2.5)
Перед дымососом – αg = α«э + Δαзу + Δαг =1,46 (2.6)
2.2 Объёмы воздуха и продуктов сгорания
Топливо – Итатское угол.
Теоретический объём воздуха: объём воздуха (V0, м3/кг), необходимый для полного сгорания 1 килограмма твердого или жидкого топлива заданного состава определяются по уравнению:
V0= 0,0889 (Ср+ 0,375Spор+к)+ 0,265Нр – 0,0333Ор (2.7)
Теоретические объемы продуктов сгорания (при α=I) при сжигании жидких топлив (Vi0, м3/кг) рассчитывается по соотношениям:
а) объем азота
VN20= 0,79 V0+ 0,008Np; (2.8)
б) объем трехатомных газов
(2.9)в) объем водяных паров
V0H2O=0,111Hp+ 0,0124W+ 0,0161 V0 (2.10)
Объёмные доли трёхатомных газов и водяных паров, равные их парциальным давлениям при общем давлении 0,1 Мпа, вычисляются по соотношениям:
(2.11) (2.12) (2.13)Где масса газов(Gr, кг/кг или кг/м3) при сжигании жидких топлив находится из выражения:
Gr= 1 – 0,01· Ар+ 1,306· α· V0. (2.15)
Vо = 0,0889 (Cр + 0,375 · Sрор + к) + 0,265 · Hр – 0,0333 · Oр = 0,889 (36,6+0,375*0,4)+0,265*2,6–0,0333*12,7=3,57 (2.16)
Теоретический объём азота:
VоN2 = 0,79 · Vо + 0,008 · Nр =0,79*3,53+0,008*0,4
=2,793 (2.17)Объём трёхатомных газов:
VRO2 = 1,866 ·(Cр + 0,375 · Sрор + к /100) =1,866*
=0,69 (2.18)Теоретический объём водяных паров:
VоH2O = 0,111 · Hр + 0,0124 · Wр + 0,0161 · Vо =0,111*2,6+0,0124*40,5+0,0161*3,5=0,848 (2.10)
Таблица 1.1
Высчитываемая величина | Размерность | Коэффициент избытка воздуха | |||
αт=1,2 | αк=α'э=1,3 | α«э=1,4 | αg=1,46 | ||
Vн2о=V0н2о+0,0161 (α-1)· V0 | м3/кг | 0,859 | 0,865 | 0,870 | 0,874 |
Vr=VRO2+V0N2+V0H2O+1,0161·(α-1) V0 | , | 5,045 | 5,404 | 5,783 | 5,978 |
ЧRO2 = VRO2 / Vг | - | 0,136 | 0,128 | 0,119 | 0,115 |
ЧH2O = VH2O / Vг | - | 0,170 | 0,160 | 0,150 | 0,146 |
Ч п= ЧRO2+ Ч Н2О | - | 0,306 | 0,288 | 0,269 | 0,261 |
Gг =1–0,01·Ар+1,306·α·V0 | кг/кг | 6,464 | 6,925 | 7,386 | 7,662 |
ρг = Gг / Vг | кг/м3 | 1,281 | 1,282 | 1,284 | 1,286 |
2.3 Расчёт энтальпий воздуха и продуктов сгорания
Энтальпия полного объёма газообразных продуктов сгорания.
I r= I0r+I ∆Vв+I ∆ H2O (2.20)
В твёрдом топливе, в продуктах горения присутствуют частицы золы, которые тоже обладают энтальпией.
I r =I0r +I ∆в+I ∆ H2O+ IЗЛ (2.21)
Энтальпия есть производственной теплоёмкости, тогда энтальпия теоретического объёма газа.
I0r=VRO2(СU)RO2+V0N2·(CU) N2+ V0H2O (СU) H2O (2.22)
Энтальпия избытка количества воздуха.
I ∆в = (α-1) V0·(CU) в (2.23)
Таблица 1.2. Энтальпии дымовых газов
υ, оC | VRO2 =0,69VоN2 =2,79VоH2O =0,84 | Jог,кДж/кг | Vо =3,53м³/кг | JоB,кДж/кг | Jг = Jог + (α – 1) JоB | |||||
αт =1,2 | αк = α'э =1,3 | α«э =1,4 | αg =1,46 | |||||||
(Cυ)CO2 | (Cυ)N2 | (Cυ)H2O | (Cυ)B | |||||||
100 | 169 | 130 | 151 | 606 | 132 | 465 | 699 | 745 | 792 | 819 |
200 | 357 | 260 | 304 | 1227 | 266 | 938 | 1414 | 1502 | 1602 | 1658 |
300 | 559 | 392 | 463 | 1867 | 403 | 1422 | 2151 | 2293 | 1435 | 2521 |
400 | 772 | 527 | 626 | 2528 | 542 | 1913 | 2910 | 3101 | 3293 | 3407 |
500 | 996 | 664 | 794 | 3206 | 684 | 2414 | 3791 | 3903 | 4171 | 4316 |
600 | 1222 | 804 | 967 | 3898 | 830 | 2929 | 4483 | 4776 | 5069 | 5245 |
700 | 1461 | 946 | 1147 | 4610 | 979 | 3455 | 5301 | 5646 | 5992 | 6199 |
800 | 1704 | 1093 | 1335 | 5346 | 1130 | 3988 | 6143 | 6542 | 6941 | 7180 |
900 | 1951 | 1243 | 1524 | 6094 | 1281 | 4521 | 6998 | 7380 | 7902 | 8173 |
1000 | 2203 | 1394 | 1725 | 6858 | 1436 | 5069 | 7871 | 8378 | 8885 | 9189 |
1100 | 2457 | 1545 | 1926 | 7623 | 1595 | 5630 | 8749 | 9312 | 9875 | 10212 |
1200 | 2717 | 1695 | 2131 | 8393 | 1754 | 6191 | 9631 | 10250 | 10869 | 11240 |
1300 | 2976 | 1850 | 2344 | 9183 | 1931 | 6816 | 10546 | 11227 | 11909 | 12318 |
1400 | 3240 | 2009 | 2558 | 9984 | 2076 | 7155 | 11415 | 12130 | 12846 | 13275 |
1500 | 3504 | 2164 | 2779 | 10789 | 2239 | 7903 | 12369 | 13159 | 13950 | 14424 |
1600 | 3767 | 2323 | 3001 | 11601 | 2403 | 8482 | 13279 | 14145 | 14993 | 15502 |
1700 | 4035 | 2482 | 3227 | 12418 | 2566 | 9057 | 14229 | 15131 | 16040 | 16584 |
1800 | 4303 | 2642 | 3458 | 13244 | 2729 | 9633 | 15170 | 16133 | 17097 | 17675 |
2.4 Тепловой баланс котлоагрегата