Принимаем
по ГОСТ 6636-69 – определим графически на эскизной компоновке.Под подшипник:
Принимаем
Рисунок 3
Под элемент открытой передачи:
,где
- крутящий момент на быстроходном валу.Принимаем
по ГОСТ 6636-69[τ]k = 15…20 МПа.
.Принимаем
.Под уплотнение крышки с отверстием и подшипник:
,где t= 4,6 мм /1, с.42/.
Принимаем
по ГОСТ 6636-69 .Принимаем
.Под колесо:
,где r = 3,5 мм /1, с.42/.
Принимаем
по ГОСТ 6636-69 – определим графически на эскизной компоновке.Под подшипник:
Принимаем
1. Намечаем расположение проекций компоновки в соответствии с кинематической схемой привода и наибольшими размерами колес.
2. Проводим оси проекций и осевые линии валов.
3. Вычерчиваем редукторную пару в соответствии с геометрическими параметрами, полученными в результате проектного расчета.
4. Для предотвращения задевания поверхностей вращающихся колес за внутренние стенки корпуса контур стенок проводим с зазором х =15 мм; такой же зазор предусматривается между подшипниками и контуром стенок. Расстояние y между дном корпуса и поверхностью колес принимаем у = 4х (60 мм).
5. Вычерчиваем ступени вала на соответствующих осях по размерам d и l, полученных в проектном расчете валов.
6. На 2-й и 4-й ступенях вычерчиваем контуры подшипников по размерам d, D, В.
На быстроходном валу – радиальные шариковые однорядные типа 209 по ГОСТ 8338-75.
На тихоходном валу – радиальные шариковые однорядные типа 316 по ГОСТ 8338-75.
d | D | В | r | Cr | Cor | |
209 | 45 | 85 | 19 | 2,5 | 33,2 | 18,6 |
316 | 80 | 170 | 39 | 3,5 | 124 | 80 |
7. Определяем расстояния lБ и lТ между точками приложения реакций подшипников быстроходного и тихоходного валов.
Для радиальных подшипников точка приложения реакций лежит в средней плоскости подшипника, а расстояние между реакциями опор вала:
.8. Определяем точки приложения консольных сил:
Считаем, что в полумуфте точка приложения силы Fм находится в торцевой плоскости выходного конца быстроходного вала на расстоянии lм от точки приложения реакций смежного подшипника.
Сила давления цепной передачи Fоп принять приложенной к середине выходного конца вала на расстоянии lоп от точки приложения реакции смежного подшипника.
9. Проставляем на проекциях эскизной компоновки необходимые размеры.
3.3 Определение усилий в зацеплениях
T1=208,56 Hм – крутящий момент на тихоходном валу
T2=1133,14 Hм – крутящий момент на тихоходном валу
Окружная сила на среднем диаметре колеса:
Радиальная сила на колесе, равная радиальной силе на шестерне:
где
– стандартный угол, ;Консольная нагрузка от шкива ременной передачи на быстроходном валу:
Консольная нагрузка от муфты на тихоходном валу:
3.4 Определение реакций в опорах
Эпюры быстроходного вала изображены на рисунке 4.
Рисунок 4
1) Вертикальная плоскость:
Проверка:
1 сечение.
2 сечение.
2) Горизонтальная плоскость:
Проверка:
1 сечение.
2 сечение.
3 сечение.
3) Строим эпюру суммарных моментов:
; ; ; ; .4) Определяем суммарные реакции опор:
Эпюры тихоходного вала изображены на рисунке 5.
Рисунок 5
Вертикальная плоскость:
Проверка:
1 сечение.
2 сечение.
Горизонтальная плоскость:
Проверка:
1 сечение.
2 сечение.
3 сечение.
3) Строим эпюру суммарных моментов:
; ; ; ; .Определяем суммарные реакции опор: