Газоконденсатная зона до извлечения основных запасов нефти находится в консервации и не эксплуатируется. В пласте создаются постоянные градиенты давления от газовой зоны к нефтяной, что приводит к вытеснению нефти жидким газом и сохранению нефтяной оторочки от преждевременного истощения. Эффективность этого метода разработки особенно значительна при подвижности водонефтяного контакта и больших размерах газовой шапки.
До извлечения основных запасов нефти давление в газовой зоне поддерживается методом нагнетания сухого газа в сводовую часть залежи. При этом способе обеспечивается несколько большая нефтеотдача, чем при предыдущем.
Нефтяная зона разрабатывается одновременно с применением сайклинг-процесса в газоконденсатной части залежи. В этом случае из нефтяной оторочки извлекается нефть, из газоконденсатной - конденсат. После извлечения основных запасов нефти и конденсата сайклинг-процесс прекращается и залежь эксплуатируется как газовая.
Предусматривается одновременная разработка нефтяной и газоконденсатной зоны залежи с нагнетанием воды в пласт. Имеется в виду нагнетание воды в зону газонефтяного контакта при линейном расположении нагнетательных скважин в газоконденсатной зоне, вдоль контакта газ - нефть. Этот метод рекомендуется при малоподвижном водонефтяном контакте. Одно из основных преимуществ метода заключается в том, что отставание разработки нефтяной зоны не приводит к потерям нефти, так как в пласте вдоль газонефтяного контакта создается водяная завеса - узкая оторочка воды, разделяющая нефтяную и газоконденсатную части залежи.
Кроме указанных методов разработки газоконденсатных залежей, имеются другие перспективные методы, применение которых могло бы обеспечить весьма высокие коэффициенты извлечения запасов нефти и конденсата. К ним относятся следующие методы:
Превращение нефтяной оторочки в газоконденсатное состояние с последующим извлечением основных запасов нефти и конденсата при однофазном состояний залежи путем закачки жирного газа. Дело в том, что система нефть-метан переходит в газовую фазу при давлении порядка 100 МПа, а применение жирного газа вместо сухого вызывает значительное снижение критического давления в системе нефть-газ.
Термическое воздействие на газоконденсатные пласты, например, созданием передвижного очага горения с подачей газа и воздуха на забой.
Многократная прокачка (до 10 и более объемов) сухого газа через пласт с целью испарения выпавшего конденсата.
Закачка жидкого газа (пропан-бутана) с созданием в пласте оторочки из этих продуктов, передвигаемых сухим газом для обеспечения вытеснения выпавшего конденсата.
Многопластовые газовые месторождения могут быть подразделены на два основных вида: к первому относятся такие месторождения, в которых начальные пластовые давления в каждом из пластов примерно соответствуют давлению гидростатического столба воды; ко второму виду относятся те, в которых начальное давление в горизонтах отличается на давление, соответствующее весу столба газа. В этом случае единая залежь разделена но высоте перемычками, при помощи которых горизонты могут сообщаться или быть изолированными.
Эксплуатировать многопластовые месторождения можно раздельно скважинами, пробуренными на каждый горизонт, и скважинами, вскрывшими все продуктивные горизонты. При раздельной эксплуатации для экономии числа скважин часто осуществляют эксплуатацию при помощи разобщителей (пакеров). В этом случае газ из нижнего горизонта поступает в фонтанные трубы, а из верхнего горизонта - в затрубное пространство.
Многопластовые месторождения можно разрабатывать различными системами.
1. Вначале разрабатывают верхние горизонты, а в последующем - более глубокие. Эту систему разработки, называемую "сверху - вниз", применяют в случае, если запасы верхних горизонтов и пластовые давления достаточны для обеспечения потребителей газом, а бурение нижних горизонтов связано со значительными капиталовложениями, техническими трудностями и прирост добычи с последних ожидается незначительный.
При этом следует изучать возможность использования эксплуатационных скважин верхнего горизонта для последующего добуривания их на нижележащие.
2. Вначале разрабатывают нижние горизонты, а затем верхние. Эту систему, называемую "снизу - вверх", применяют обычно для первого вида многопластовых месторождений, т.е. когда запасы газа в нижних горизонтах значительно превышают запасы верхних горизонтов, а давление в верхних горизонтах недостаточно для обеспечения бескомпрессорной подачи газа потребителям. Кроме того, эту систему разработки можно применять для понижения давления в нижних горизонтах до давления, отличающегося от верхнего на вес столба газа, т.е. когда месторождение первого вида следует превратить во второй. После этого можно одновременно эксплуатировать верхние и нижние горизонты, что позволяет исключить переток газа из нижележащих горизонтов в вышележащие при последующей их разработке.
3. Одновременная система разработки верхних и нижних горизонтов может быть осуществлена как раздельной эксплуатацией скважин с каждого горизонта, так и совместной эксплуатацией с применением пакеров или без них в одной скважине. Эта система позволяет получить требуемое количество газа с наименьшим числом скважин.
Разработка скважинами всех горизонтов наиболее удобна для месторождений второго вида. Систему эксплуатации ряда горизонтов в одной скважине можно применять в случае когда состав газа по различным горизонтам не отличается по содержанию сероводорода и когда крепость пород и их коллекторские свойства также примерно одинаковы, что не приводит к резкому различию предельно допустимых депрессий по отдельным горизонтам и выходу из строя большинства скважин вследствие быстрого обводнения одного из горизонтов.
При отсутствии изложенных условий такая эксплуатация ряда горизонтов в одной скважине может оказаться невыгодной.
Например, в верхнем пласте могут быть получены высокие дебиты при высоких депрессиях на пласт, так как пласт представлен крепкими породами. Нижний пласт сложен рыхлыми породами и может эксплуатироваться только при небольших депрессиях. Эксплуатация этих двух горизонтов в одной скважине приведет к тому, что нельзя будет допустить высокие депрессии, так как произойдет разрушение нижнего пласта, а следовательно, и не будет эффекта от эксплуатации их в одной скважине без разделения.
При эксплуатации в одной скважине одновременно нескольких горизонтов месторождений первого вида, когда давления отличаются между собой на давление гидростатического столба воды, может возникнуть переток газа из одних горизонтов в другие. При остановке скважины также будет наблюдаться переток газа. Поэтому во время эксплуатации без разобщения ряда горизонтов в одной скважине с целью получения наибольшего дебита следует учитывать все факторы в данных конкретных условиях.
Одновременная разработка с пакерами или отдельными скважинами позволяет широко использовать эжекцию газа для повышения давления газа, полученного из пластов с низким давлением.
Выбор системы разработки зависит от многих факторов: давления, запасов газа, параметров пласта, продвижения вод и допустимых рабочих дебитов с отдельных горизонтов, а также от состава газа. Если в одних пластах содержится в газе сероводород, а в других он отсутствует, то для транспортировки газа с сероводородом и без него нужны отдельные газосборные сети. Если в верхних пластах содержится сухой газ, а в нижних значительное количество конденсата, то условия эксплуатации каждого горизонта будут различными.
Выбор системы разработки определяется, исходя из технико-экономических показателей с учетом потребности в газе данного района.
Основная причина актуальности изучения газогидратных месторождений - рассмотрение углеводородов в качестве сырья, способного в будущем заменить нефть, запасы которой на Земле ограничены. Ежегодно концентрация метана в атмосфере вырастает на 1%. Не исключая антропогенные источники, исследователи связывают это с появлением большого количества участков подводной разгрузки метана. Газовые гидраты представляют собой твердые соединения молекул газа и воды, существующие при определенных давлениях и температурах. В одном кубометре природного гидрата содержится до 180 м3 газа и 0,78 м3 воды. Если раньше гидраты изучались с позиции технологических осложнений при добыче и транспорте природного газа, то с момента обнаружения залежей природных газовых гидратов их стали рассматривать как наиболее перспективный источник энергии. В настоящий момент известно более двухсот месторождений газовых гидратов, большая часть которых расположена на морском дне. Запасы газогидратов геологи оценивают, соотнося их с суммарным объёмом разведанных на сегодняшний день месторождений нефти, природного газа и угля. Их вывод таков: залежи метана на дне морей и океанов обладают вдвое большими энергоресурсами, чем все прочие ископаемые энергоносители вместе взятые
Самое первое упоминание о больших скоплениях газовых гидратов связано с Мессояхским месторождением, открытым в 1972 г. в Западной Сибири.
Наиболее показательным является пример другого предполагаемого гидратоносного района - северного склона Аляски (США). Долгое время считалось, что данный район имеет значительные запасы газа в гидратном состоянии. Так, утверждалось, что в районе нефтяных месторождений Прудо Бей и Кипарук Ривер имеется шесть гидратонасыщенных пластов с запасами 1,0-1,2 трлн м3. На данный момент подтверждена гидратоносность лишь двух месторождений природных гидратов, представляющих наибольший интерес с точки зрения промышленного освоения: Маллик - в дельте реки Макензи на северо-западе Канады, и Нанкай - на шельфе Японии. К промышленной разработке месторождения Нанкай намечается приступить в 2017 г.