В зависимости от состояния опрошенных параметров и команд оператора в текущий момент времени системным блоком формируются управляющие сигналы для исполнительных механизмов, в соответствии с заданным алгоритмом. Выходные дискретные сигналы переключают твердотельные реле, передавая тем самым управляющие воздействия на исполнительные механизмы. В качестве элементов гальванической развязки и твердотельных реле использованы модули фирмы.
ЦАП формирует установки скорости электроприводов. Управление электроприводами и съем информации об их состоянии (реальная скорость вращения и нагрузка, готовность к работе и возможные сбои) осуществляются по интерфейсу Я8-485.
Выбор режима работы и задание команд управления проводятся при помощи клавиатуры и манипулятора. Текущие, аварийные и архивные значения контролируемых параметров могут быть задокументированы печатающим устройством. Устройство оповещения на базе звуковой карты и акустических колонок предназначено для выдачи предупредительных звуковых сигналов обслуживающему персоналу при возникновении предаварийных ситуаций.
Бесперебойное питание вычислительного комплекса обеспечивает источник фирмы АРС серии Smart-UРSмощностью 700 ВА. Оборудование комплекса размещено в шкафу вычислительном, общий вид которого показан на рисунке 1.4.
Помимо промышленного компьютера в состав системы управления входят измерительные, коммутационные, вспомогательные устройства, датчики и преобразователи.
Основные элементы этого оборудования перечислены в таблице 1.1.
Искробезопасные цепи для измерения температуры смеси и воды в рубашке чаши построены с использованием взрывозашищенных термопреобразователей с унифицированным выходным сигналом ТСМУ-Ех-3224 0-100°С.
Для измерения остаточного давления в чаше применен взрывобезопасный датчик "Сапфир", а для визуализации значений остаточного вакуума и давления сжатого воздуха используются взрывозащищённые манометр и вакуумметр.
Таблица 1.1 - Элементы оборудования системы
Наименование | Количество | Назначение |
1 | 2 | 3 |
Термопреобразователи ТСМУ-Ех-3224, 0-100°С | 6 | Для измерения температуры смеси и воды в рубашке чаши |
Блоки питания БПД-40, Ех 1, 4-20 мА | 2 | Для питания искробезопасных цепей датчиков температуры |
Датчик остаточного давления "Сапфир"-22-МТ-Ех-2ОЗО/ 6,3 кПа | 1 | Для измерения остаточного давления при вэкуумировании чаши |
Датчик давления МТ100Р-11036/10 МПа | 2 | Для измерения давления масла в гидросистеме |
Блок питания 4БП-36 | 1 | Для питания датчиков давления |
Блок преобразования сигналов БПС-90П | 1 | Для питания датчиков "Сапфир" |
Манометр сигнализирующий ДМ2005Сг1Ех<ВТ4/ 0,6 МПа | 1 | Для индикации уровня давления воздуха в пневмосистеме |
Вакуумметр сигнализирующий ДВ2005Сг1ЕхсIIВТ4/ 100 кПа | 1 | Для индикации глубины вакуума в чаше |
Продолжение таблицы 1.1 | ||
1 | 2 | 3 |
Барьер искроэащиты МС13-8Ех0-К/24VDC | 10 | Для организации искробезопасных цепей датчиков положений |
Индуктивный бесконтактный датчик положения NI10 G18SК-У1Х1 | 100 | Для установки на исполнительные механизмы |
Блок подготовки воздуха ПБ16.31 | 1 | Для очистки и подачи воздуха в пневмосистему |
Пневмораспределитель В64-34А | 1 | Для управления подачей воздуха в пневмосистему |
Частотные преобразователи | 2 | Для безударного управления электродвигателями |
Пост управления кнопочный КУ-91/КУ-92, 1ЕхdIIВТ5 | 10 | Для взрывозащищенного локального пульта |
Модули УСО Grауhill73G-IDC5В73G-ОDС573С-ОАС5А | 1323216 | Для коммутации сигналов - входных 24 В постоянного тока - выходных 24 В/3 А постоянного тока - выходных до 240 В/3 А переменного тока |
Клеммы WАGО | 420 | Для организации кроссовых соединений внутри шкафа |
Шкафы | 2 | Для размещения устройств автоматики, управления и промышленного компьютера |
Искробезопасные цепи датчиков положения NI10 С185К-У1Х1 построены с использованием 8-канальных барьеров искрозащиты МС13-8Ех0-К/ 24\ТЗС, что значительно уменьшило аппаратную часть схемы управления. В последующих разработках вместо барьеров фирмы Тurskпредпочтение отдавалось аналогичным устройствам фирмы Реррегl+Fuchs.
Для формирования сигналов управления, обеспечения надежной коммутации и гальванической изоляции между устройствами системы применены модули УСО фирмы Grayhillсерии 73G. На рисунке 1.4 представлена задняя часть шкафа преобразователей, где хорошо видны кросс-панели с модулями УСО. Надежность электрических соединений внутри шкафа обеспечивают клеммы WАGО. По наблюдениям авторов, использование этих пружинных клемм сокращает время монтажа кроссовых соединений более чем на 40% по сравнению с традиционным винтовым способом.
Частотное регулирование скорости вращения двигателей позволяет осуществлять безударное старт-стопное управление мешалкой с постоянным моментом на валу, что очень важно при перемешивании взрывоопасных компонентов. Система управления обеспечивает два режима работы частотного преобразователя: местный и дистанционный. В местном режиме все команды управления задаются с пульта преобразователя.
Рисунок 1.4 - Шкаф вычислительный
Пульт имеет набор функциональных клавиш, позволяющих задавать требуемые параметры разгона и торможения, запоминать их, задавать установки и наблюдать на жидкокристаллическом индикаторе контролируемые параметры: ток нагрузки, частоту, напряжение и потребляемую мощность в цепях управления. Для дистанционного управления приводами используется интерфейс Я8-485, позволяющий задавать все необходимые параметры управления с удаленного пульта оператора, расположенного вне взрывоопасной зоны.
Весь комплекс технических средств системы управления размещен в 2 шкафах размером 600x800x2200 мм, которым требуется помещение площадью всего 12 квадратных метров (рисунок 1.5).
Рисунок 1.5 - Модули УСО в шкафу преобразователей
Рисунок 1.6 - Размещение комплекса технических средств системы в двух шкафах
Система обеспечивает обработку сигналов, перечень которых приведен в таблице 1.2.
Программное обеспечение разработано с использованием пакета Genie, позволившего в короткие сроки создать удобный интерфейс оператора, а также алгоритмы управления и регистрации событий.
Для визуального наблюдения за состоянием технологического оборудования и значениями контролируемых параметров используется мнемосхема, индицируемая на экране монитора (рисунок 1.7). На мнемосхеме в реальном масштабе времени отображается динамика технологического процесса, а использование объемных изображений элементов мнемосхемы, максимально приближенных к виду реальных конструкций технологического оборудования, облегчает работу оператора и обеспечивает хорошее восприятие им фактического состояния управляемого в дистанционном режиме оборудования.
Таблица 1.2 - Характеристики обрабатываемых сигналов
Сигнал | Количество | Характеристика | Назначение |
Дискретный входной | 132 | 3-32 В | От датчиков положения |
Дискретный выходной | 48 | 24-280 В/3 А (перем.) 5-60 В/3 А (пост.) | На исполнительные механизмы |
Аналоговый входной | 16 | -10. +10 В (2 кОм) | От датчиков температуры, давления, вакуума |
Аналоговый выходной | 6 | По напряжению: - 10. +10 В, по току: 0-5 мА (2 кОм) | На управление электродвигателями мешалки и водила |
Выбранная частота выполнения задач контроля и управления 2 Гц обеспечивает необходимое время для реакции системы управления на нештатные ситуации, своевременного их анализа и предотвращения аварий.
Логика управляющей программы обеспечивает анализ 20 различных блокировок, не позволяющих даже неподготовленному оператору выполнить какую-либо запрещенную операцию.
Виртуальная панель управления, также индицируемая на экране монитора, обеспечивает быструю обучаемость оператора и простоту формирования команд управления оборудованием в дистанционном режиме. На рисунке 1.7 показана мнемосхема с виртуальной панелью управления для операции смешения. Здесь представлено одно из промежуточных состояний оборудования:
¾ тележка с чашей зафиксированы на позиции, о чем свидетельствуют зеленые треугольники перед колесами тележки (когда тележка не зафиксирована, цвет треугольников красный);
¾ из 9 необходимых условий процесса смешения выполнены 7, о чем свидетельствуют зеленые квадратные транспаранты слева от позиции (если транспарант красный, то соответствующее условие для выполнения операции не выполнено;
¾ для того чтобы узнать, какое именно условие не выполнено, достаточно навести указатель мыши на транспарант и щелкнуть клавишей управления, в результате в верхней части мнемосхемы высветится расшифровка необходимого условия, например, "давление в гидросистеме ниже нормы";
¾ наиболее важные для данной операции параметры индицируются на виртуальной панели; в верхней части правого активного окна видно, что в текущий момент времени температура смеси равна 25,3°С, подводящей воды 25,9°С, отводящей воды 25. ГС, давление в гидросистеме 42,3 МПа, приводы мешалки и водила остановлены (о чем свидетельствуют как переключатель "АG. ON-РL. ОN", так и красный цвет самой надписи "SТОР"); по положениям остальных переключателей "F1Х-ING", "СLАМРS", "ТRАУ", "GАТЕ" легко определить истинное состояние оборудования (в данном случае никаких активных действий не производится, так как все переключатели находятся в положении "SТОР"). Практический опыт работы по управлению установкой показал, что даже неподготовленный оператор после 3-4 часов работы вполне удовлетворительно справляется с виртуальной панелью управления, которая на первый взгляд кажется не очень понятной.