Содержание
Введение
1. Проблемы разработчика АСУ ТП
2. Краткое описание технологической схемы
3. Аппаратные средства
4. Программное обеспечение
5. Надежность и безопасность
Высокая степень автоматизации дистанционного управления оборудованием, расположенным во взрывоопасной зоне, достигается за счет использования современных технических и программных средств, а требуемая высокая надежность обеспечивается не только за счет искробезопасных цепей и взрывозащищенных элементов автоматики, но и за счет использования "холодного" резервирования основных элементов системы управления и контроля, а также сочетания дистанционного и местного режимов управления оборудованием.
В статье рассматриваются вопросы построения искробезопасных цепей и способы управления оборудованием, расположенным во взрывоопасной зоне и предназначенным для применения в производстве промышленных взрывчатых веществ, медицине, химическом производстве и в других отраслях, где есть необходимость перемешивания многокомпонентных составов с весом более 2 тонн при жестком контроле технологических параметров.
Дистанционное управление технологическим оборудованием, расположенным во взрывоопасной зоне, является актуальной задачей инженера-разработчика АСУ ТП, применяемых в химической, нефтегазодобывающей, угольной и других отраслях.
Основные проблемы, которые решает разработчик при внедрении АСУ ТП, известны:
¾ максимально возможная степень автоматизации дистанционного (без участия человека) управления технологическим оборудованием;
¾ высокая надежность каналов сбора и передачи информации;
¾ своевременная реакция системы управления на предаварийные и аварийные ситуации;
¾ строгое соответствие алгоритмов управления оборудованием логике технологического процесса;
¾ максимально возможная визуализация состояния оборудования и контролируемых технологических параметров в темпе протекания процессов;
¾ надежность технических средств управления и контроля, простота их технического обслуживания и замены. Инженеры 70-80-х годов помнят, как создавались такие системы на базе отечественных контроллеров типа "Ломиконт", "Ремиконт", "Электроника" и др. и как проблематично было найти "золотую середину" между техническими возможностями используемых средств и хотя бы удовлетворительным выполнением перечисленных требований.
Из-за ограниченной номенклатуры специальных средств измерения, контроля и отображения параметров, применяемых при построении искробезопасных каналов, низкой степени интеграции используемой элементной базы и необходимости аппаратного резервирования для обеспечения требуемой отказоустойчивости создавались хоть и надежные, но достаточно громоздкие в конструктивном исполнении системы управления.
В частности, система управления и контроля с небольшими по современным меркам возможностями (10 аналоговых входных сигналов, 50 дискретных входных сигналов, 5 аналоговых выходных и 20-30 дискретных выходных сигналов) размещалась в 5-7 шкафных конструктивах стандартных размеров 600x800x2000 мм. Искробезопасные цепи проектировались на одноканальных преобразователях, а регистрация параметров (температуры, давления, глубины вакуума) осуществлялась на диаграммных приборах (КСУ, КСМ, КСП и др.), которые, в лучшем случае, устанавливались по четыре штуки на передней панели шкафа указанных размеров, то есть для отображения 10 различных аналоговых сигналов требовалось, как правило, три шкафа с контрольно-измерительными приборами (КИП).
Для визуализации технологических процессов конструировались различные мнемосхемы с использованием цветных светосигнальных элементов (лампочек на 12, 24 и реже 220 В). Такие мнемосхемы размешались в пультовых, занимали достаточно много места и имели невысокую информативность, так как на них трудно было отобразить динамику процесса. Позже программисты стали использовать для таких целей экраны алфавитно-цифровых дисплеев в режимах псевдографики, позволяющих отображать технологический процесс в виде элементарных "стрелочек" и "квадратиков".
Некоторые разработчики для улучшения визуализации процессов создавали собственные графические системы на базе бытовых цветных телевизоров, но и это не спасало положения! Достаточно медленный вывод изображения на экран ухудшал остальные характеристики системы (увеличивал, например, время реакции на аварийные события).
Существовавшие в то время зачатки операционных систем реального времени позволяли создавать многозадачные системы с использованием системы прерываний. Для удовлетворительной работы многозадачной системы использовались диспетчеры задач собственной разработки, но такая разработка была по силам только опытным программистам-практикам и требовала достаточно много времени.
Экскурс в проблемы разработки и внедрения АСУ ТТЛ 70-80-х годов для взрывоопасных производств проведён авторами сознательно: с одной стороны, чтобы воздать должное программистам 80-х годов, создававшим работоспособные системы управления и находившим уникальные программно-технические решения, а с другой стороны, чтобы показать, как использование современных программно-технических средств и технологий автоматизации упростило и ускорило создание подобных систем, какие принципиально новые возможности предоставлены современным разработчикам.
Анализ технических характеристик современных средств автоматизации склонил авторов разработки в пользу применения в качестве основных элементов системы изделий фирмы Advantech. На выбор повлияли их высокая техническая надежность, многофункциональность и простота обслуживания, позволяющие в сжатые сроки создавать качественные системы, ориентированные как на российского, так и зарубежного заказчика.
Далее описывается вариант системы управления для установки получения промышленных взрывчатых веществ, спроектированной и внедренной в экспортном варианте всего за четыре месяца.
Рисунок 1.1 - Технологическая схема и структура управления
Технологическая схема автоматизируемого процесса достаточно проста и представлена на рисунке 1.1.
Технология состоит в том, чтобы в чаше заданной емкости провести перемешивание многокомпонентного порошкообразного состава известной рецептуры и выгрузить полученный продукт в подготовленный бункер-накопитель (на схеме не показан), расположенный в том же производственном помещении.
Для перемешивания состава используется устройство, внешне напоминающее миксер (рисунок 1.2) с вращающимися элементами (лопастями). Благодаря специальному редуктору вращение лопастей происходит по сложному закону: они вращаются вокруг собственной оси и дополнительно вокруг оси главной конструкции (планетарное перемешивание).
Для приведения в движение такой установки используются два двигателя переменного тока с короткозамкнутым ротором мощностью 15 и 35 кВт, обеспечивающих постоянную нагрузку на валу (безударный старт-стопный режим). Один двигатель вращает лопасти мешалки, а другой обеспечивает их планетарное движение.
Рисунок 1.2 - Установка смешения
Чаша поднимается к смесителю гидроцилиндром и фиксируется специальными зажимами. Для обеспечения более тщательного перемешивания в чаше формируется вакуум. После перемешивания чаша опускается на транспортную тележку и перевозится к месту проведения операции (на позицию) вытеснения. Вытеснение производится поршнем, установленным на специальной раме, к которой пристыковывается чаша с готовым продуктом. Дополнительно предусмотрено и вспомогательное оборудование, позволяющее подавать, например, горячую и холодную воду в рубашку чаши, готовить воздух для исполнительных пневмомеханизмов, нагнетать масло в гидросистемы (маслостанции 1,2), устанавливать или снимать крышку, закрывающую чашу, поднимать или опускать чашу, вытеснять готовую массу (смесь) в приемный контейнер, фиксировать тележку с чашей на позициях и т.д.
Технологическое оборудование размещено во взрывоопасной зоне 1 по классификациям МЭК, или в зоне класса В-1а по российской классификации, что предъявляет особые требования к аппаратным средствам и элементам автоматики. Эти требования, усугубленные условиями эксплуатации (температура до +50°С, влажность до 90%), предопределили выбор аппаратных средств, включая компьютер, в индустриальном исполнении для жёстких условий эксплуатации.
Рисунок 1.3 - Структурная схема вычислительного комплекса
Вычислительный комплекс системы реализован на 1ВМ РС совместимом промышленном компьютере фирмы Advantech. В 14-слотовом шасси IРС-610 размещены основные элементы системного блока и устройств связи с объектом (УСО). На рисунке 1.3 приведена структурная схема вычислительного комплекса.
Центральное место в аппаратуре комплекса занимает процессорная плата РСА-61451 с интерфейсами VGA и твердотельного диска.
Принцип работы комплекса построен на опросе датчиков состояния и положения технологического оборудования, температур, давлений, глубины вакуума, контроля за состоянием электроприводов, а также на выполнении команд, поступающих от виртуального пульта оператора и кнопок локального управления, и на формировании соответствующих управляющих сигналов.
Сигналы от датчиков состояния и положения через модуль гальванической развязки поступают на модули дискретного ввода. Аналоговые сигналы через измерительные преобразователи поступают на АЦП.