Вступ
1. Огляд і аналіз методів вимірювання вологості газу
1.1 Аналізатор, що вимірює температуру конденсації пари води на охолоджуваному дзеркалі
1.2 Ємкісні аналізатори
1.3 Електролітичні аналізатори на основі п'ятиокису фосфору
1.4 Аналізатори вологості на основі кварцевого кристалу
1.5 Порівняння методів вимірювання вологості газу в потоці
2. Розробка принципової та структурної схем приладу для вимірювання вологості газу
3. Визначення та дослідження основних елементів і вузлів приладу для вимірювання вологості газу
3.1 Термоперетворювач опору
3.2 Ємнісний перетворювач вологості
3.3 Тенорезисторний перетворювач тиску
4. Розрахунок основних елементів вузлів приладу для вимірювання вологості газу
4.1 Розрахунок термоперетворювача опору
4.2 Розрахунок ємнісного перетворювача вологості
4.3 Розрахунок габаритно-монтажних параметрів приладу
5. Розрахунок метрологічних характеристик
5.1 Абсолютна вологість (a)
5.2 Точка роси (ТD)
5.3 Вимірювання точки роси вище 20°С
5.4 Об'ємний вологовміст (x).
6. Розрахунок швидкодії і точності вимірюваних параметрів
6.1 Оцінка характеристики ВК по точності і швидкодії
6.2 Вибір апаратури обробки (ЕОМ)
Висновок
Список літератури та посилань
р - тиск, МПа;
ε - діелектрична проникність середовища;
φ - відносна вологість, %;
а - абсолютна вологість, г/м3;
V - об’єм,
;G - сила, Н;
С - ємність, пФ;
h - товщина, м;
R - опір, Ом;
U - напруга, В;
l - довжина, м;
b - ширина, м;
Т - температура, ºС;
ТD - температура точки роси, ºС
Вологість газу є одним з основних параметрів при добуванні, транспортуванню і переробці природного газу. Надійне і точне вимірювання цього параметра потрібний на всіх етапах - від свердловини до газопереробного заводу, істотно впливає на економічність і ефективність процесів. Завдання вимірювання вологості можна розділити на три великі групи по різних процесах газової промисловості, а саме:
у процесах осушення газу на родовищах і газопереробних заводів;
при транспортуванні газу;
у комерційному обліку газу.
Серед численних аналізаторів, використовуваних для лабораторного аналізу вологості газу, лише лічені одиниці здатні працювати в потоці. Можна виділити чотири основних типів таких аналізаторів.
Аналізатор, що вимірює температуру конденсації пари води на охолоджуваному дзеркалі. Це аналізатор що здійснює вимірювання в одиницях температури точки роси.
Аналізатор з електролітичним осердям на основі п'ятиокису фосфору, також реалізовуючий перший принцип - закон електролізу Фарадея (що зв'язує кількість електрики з масою поглиненої Р2О5 води). Вимірювання здійснюється в абсолютних одиницях, перерахунок в одиниці температури точки роси проводиться по таблицям ASTM або ГОСТ.
Ємнісні аналізатори, що реалізують принцип зміни ємності конденсатора за рахунок зміни діелектричної проникності, яка залежить від вмісту вологи.
Аналізатор, що реалізовує принцип мікровагів на основі п'єзокристала з спеціальним покриттям. Вода, поглинаючись в порах полімерного покриття кварцевого резонатора, змінює його масу, а, отже, і його частоту. Аналізатор вимірює абсолютну вологість, і для перетворення в температуру точки роси використовуються таблиці ASTM або ГОСТ.
Призначення
Аналізатор "КОНГ-ПРИМА-10" рисунок 1 застосовується для вимірювання точки роси по волозі і вуглеводням в природному газі, повітрі і в інших газах. Аналізатор може бути використаний в газовій, нафтовій промисловості і інших галузях народного господарства для контролю якості технологічних процесів по параметру - точка роси вологи (вологість) і точка роси вуглеводнів.
Рисунок 1 - Аналізатор температури точки роси "КОНГ-ПРИМА-10"
Метод вимірювання
У інтерференційному аналізаторі точки роси "КОНГ-ПРИМА-10" рисунок 2, як і в попередніх моделях приладів серії "КОНГ-ПРИМА", реалізований конденсаційний принцип вимірювання з реєстрацією процесів конденсації оптичним методом. Суть методу полягає у вимірюванні температури, до якої необхідно охолодити прилеглий до охолоджуваної поверхні шар вологого газу, для того, щоб довести його до стану насичення при робочому тиску. Метод визначення точки роси, використовуваний в аналізаторі, відповідає ГОСТ 20060-83 і ГОСТ 20061-84.
Опис і принцип роботи
Джерелом випромінювання є лазерний світлодіод 10, поляризоване світло від якого через систему оптичних лінз 4,11 під певним (спеціально заданим) кутом потрапляє на кремнієву пластину 9 (дзеркало або ЧЕ).
Дзеркало 9 охолоджується трьохкаскадною термоелектронною батареєю 8. Відбите від дзеркала світло реєструється по трьом каналам: основному 6, такому, що працює по віддзеркаленню світла і двом додатковим 5 і 7, таким, що працює по розсіянню світла.
Рисунок 2 - Аналізатор температури точки роси "КОНГ-ПРИМА-10"
По різній реакції кожного інформаційного каналу на освіту на дзеркалі при його охолоджуванні конденсату, відбувається диференціювання компонентного складу конденсату (вода, лід, гідрати, вуглеводні і ін.) Принцип реєстрації освітлення на дзеркалі плівки конденсату заснований на використанні ефекту Брюстера рисунок 1.3, що є новим моментом в гігрометрії. При падінні поляризованого світла на плоску поверхню під певним кутом ("кутом Брюстера"), на межі розділу середовищ "газ - кремнієва пластина" все світло стає заломленим і поглинається пластиною аморфного кремнію. При зміні властивостей межі розділу середовищ (при появі нової межі розділу: "газ - плівка конденсату") частина світу відбивається. Зміни інтенсивності відбитого променя фіксується фотоприймачем 5, сигнал якого є основним інтерференційним каналом.
Рисунок 3 - Ілюстрація ефекту Брюстера
Для фіксації утворення неоднородностей розподілу водного конденсату ("капіж") або кристалів льоду і гідратів на ЧЕ призначені фотоприймачі 6 і 7. Вони фіксують зміну розсіяного світла і тому розташовані збоку від направляючої призми і від фотоприймача того, що фіксує прямий відбитий сигнал. Фотоприймач 6 фіксує зміну інтенсивності розсіюваного світла по ходу світлового потоку лазера (пряме розсіювання), а фотоприймач 7 - в протилежному напрямі (зворотне розсіювання).
Перетворювач точки роси (ПТР), що входить до складу аналізатора, може мати різних конструктивних виконань, які визначаються при замовленні аналізатора:
ПТР у виконанні КРАУ2.848.004, з погружним газопідведенням, призначений для монтажу безпосередньо на трубопроводі
ПТР у виконанні КРАУ.848.004-01, з проточним газопідведенням, призначений для підключення до трубопроводу по проточній схемі, наприклад, через систему підготовки газу КРАУ2.848.002 або КРАУ2.848.003 (див. СПГ)
ПТР у виконанні КРАУ2.848.004-02, на відміну від ПТР КРАУ2.848.001-01 має підвищену міцність елементів конструкції ПТР, що дозволяє використовувати його при максимальному робочому тиску до 25 Мпа. Окрім цього, датчик ПТР теплоізольований від корпусу - це дозволяє ефективніше охолоджувати датчик ПТР при використанні його в комплекті із СПГ КРАУ2.848.003.
Широкого поширення серед вимірювачів вологості газів набули прилади сорбційно-ємкісні датчики, що мають як первинні перетворювачі
відносній вологості рисунок 4. Такі прилади оснащені також датчиками температури, в результаті чого не представляє праці за допомогою вбудованого мікроконтролера на основі зміряних значень відносної вологості і температури набути значень інших вологісних характеристик газу, таких як температура точки роси (далі - точка роси), абсолютна вологість і вологовміст. Прилади, що використовують такий спосіб набуття значень вологості, відносно прості і недорогі. Проте, при всій привабливості даного методу, у нього є ряд моментів, що обмежують його застосування. Відволікаючись від фізико-хімічних особливостей сорбційно-ємкісних датчиків, зупинимося на метрологічній стороні їх застосування.
Рисунок 4 - Прилад для вимірювання вологості газу "РОСА-10"
Вимірювачі з ємкісними датчиками мають діапазон вимірювання відносної вологості 0-100% і похибка 2-3%. Стандартна похибка вимірювання температури складає 0,3-0,5°с. Про похибку вимірювання інших величин в паспортах приладів зазвичай нічого не мовиться. В результаті споживач не має не тільки гарантованого значення похибки, але навіть якого-небудь уявлення про її можливому значенні. Тим часом, похибка вимірювання різна для різних параметрів і неочевидним чином пов'язана з похибкою вимірювання початкових величин - відносної вологості і температури. Проте, її значення досить просто виходить шляхом нескладних математичних викладень.
Слід наголосити, що існує "похибка вимірювання температури" та "додаткова температурна похибка датчика вологості". Перша приводить до того, що при обчисленнях в приладі використовується неправильне значення температури. Ця похибка присутня при всіх температурах, зокрема і при кімнатній. Тому вона впливає на значення основної похибка всіх величин, що отримуються шляхом розрахунку із заміряних значень відносної вологості і температури. Сенс другої похибки виражається її назвою "додаткова", тобто ця похибка виявляється тільки при температурах відмінних від кімнатної. Вона обумовлена залежністю параметрів самого датчика вологості від температури.